Abstract:Based on the data of 275 enterprises listed in China's small and medium-sized board from 2006 to 2011, this paper establishes a panel count model to analyze the behaviors and mechanism of enterprise technological innovation. The results show that the early level of enterprises' technological innovation has a significant positive influence on the current innovation output, thus the technological innovation process has dynamic feedback effects. The R& D spending, science and technology personnel proportion, enterprise scale and financing ability play the positive roles in promoting the ability of enterprises' technological innovation. However, compared with R& D spending, the input of science and technology personnel has the smaller effect. This paper provides further evidence that the influence of human capital has still not fully played their roles. Besides, the impact of enterprise' profitability shows an inverted U shape, namely, the excessively high profitability of new products has a certain limit in pushing enterprise technology innovation activities
赵娜, 张晓峒, 杨坤佳. 我国中小企业技术创新行为的实证研究[J]. 中国科技论坛, 2014(5): 74-78.
Zhao Na, Zhang Xiaotong, Yang Kunjia. Empirical Research on the Innovation Behaviors of Small and Medium-Sized Enterprises in China. , 2014(5): 74-78.
[1]Zahra S A. Environment, Corporate Entrepreneurship and Financial Performance:A Taxonomic Approach[J]. Journal of Business Venturing. 1993, 8(4):319-340. [2]Bertschek Irene, Horst Entorf. On nonparametric estimation of the schumpeterian link between innovation and firm size[J]. Empirical Economics. 1996, 21(3):401-426. [3]Crépon B, Duguet E. Estimating the Innovation Function from Patent Numbers:GMM on Count Panel Data[J]. Jouranl of Applied Econometrics. 1997, 12(3):243-263. [4]Greve Henrich R. A Behavioral Theory of R&D Expenditures and Innovations:Evidence from Shipbuilding[J]. Academy of Management Journal. 2003, 46(6):685-702. [5]Griffith R, Huergo E, Mairesse J, Peters B. Innovation and Productivity across Four European Countries[J]. Oxford Review of Economics Policy. 2006, 22(4):483-498. [6]Bettina Becker, Nigel Pain. What Determines Industrial R&D Expenditure in the UK?[J]. The Manchester School. 2008, 76(1):66-87. (下转第85页) (上接第78页) [7]Woertera M, Roper S. Openness and Innovation-Home and Export Demand Effects on Manufacturing Innovation:Panel Data Evidence for Ireland and Switzerland[J]. Research Policy. 2010, 39(1):155-164. [8]周黎安, 罗凯. 企业规模与创新:来自中国省级水平的经验证据[J]. 经济学(季刊), 2005, 4(3):623-638. [9]安同良, 施浩, Ludovico Alcorta. 中国制造业企业R&D行为模式的观测与实证——基于江苏省制造业企业问卷调查的实证分析[J]. 经济研究, 2006, (2):21-30. [10]吴延兵. 市场结构、产权结构与R&D——中国制造业的实证分析[J]. 统计研究, 2007, (5):3-25. [11]Jefferson Gary H, Bai Huanao, Guan Xiaojing, Yu Xiaoyun. R&D Performance in Chinese Industry[J]. Economics of Innovation and New Technology. 2006, 15(4/5):345-366. [12]Alemeida R, Fernandes A M. Openness and technological innovations in developing countries:evidence from firm-level surveys[J]. Journal of Development Studies, 2008, 44(5):701-727. [13]Fleisher B, Li H, Zhao M Q. Human Capital, Economic Growth, and Regional Inequality in China[J]. Journal of Development Economics. 2010, 92(2):215-231. [14]李丹蒙, 夏立军. 股权性质、制度环境与上市公司R&D强度[J]. 财经研究, 2008, (4):93-104. [15]吴延兵. 中国哪种所有制类型企业最具创新性[J]. 世界经济, 2012, (6):68-75. [16]Blundell R, Griffith R, Windmeijer F. Individual effects and dynamics in count data model[J]. Journal of Econometrics. 2002, 108(1):113-131. [17]Xiaobo Li. Chinas Regional Innovation Capacity in Transition:An Empirical Approach[J]. Research Policy. 2009, 32(2):338-357. [18]Blundell R, Griffith R, Reenen J V. Dynamic count data Models of technological innovation[J]. The Economic Journal. 1995, 105(3):333-344. [19]Alzaid A A, Al-Osh M. An integer-valued pth-order autoregressive structure (INAR (p)) process[J]. Journal of Applied Probability. 1990, 27(2):314-324.