Driving Factors and Regional Differences of Intelligent Manufacturing in China
Liu Jun1,2, Qian Yu1,2, Cao Yaru3, Li Lianshui1,2
1. China Institute of Manufacturing Development,Nanjing University of Information Science & Technology, Nanjing 210044,China; 2. School of Management Science and Engineering,Nanjing University of Information Science & Technology,Nanjing 210044,China; 3. College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
Abstract:Intelligent manufacturing is an important path to promote the high-quality development of manufacturing.This paper defines the connotation of manufacturing intelligence,builds an evaluation system of 13 indicators including basic input,production application,and market benefit.We use the analytic hierarchy process and entropy method to determine weights,and calculates China's manufacturing intelligence from 2010 to 2016.It empirically tests the driving factors of manufacturing intelligence from the macro level and the enterprise micro level.The results show that in the intelligent evaluation index system,the basic input layer and the production application layer occupy a higher weight and play a major role.The intelligentization of China's manufacturing industry has obvious spatial heterogeneity,showing a trend of descending gradient distribution in the east,middle and west.Innovation ability,labor cost,policy support,etc.are important driving factors for the intelligentization of the manufacturing industry.Among them,innovation ability is the main factor driving the intelligentization of the east,and cost pressure is the main factor for the intelligent transformation of the central and western regions.
刘军, 钱宇, 曹雅茹, 李廉水. 中国制造业智能化驱动因素及其区域差异[J]. 中国科技论坛, 2022(1): 84-93.
Liu Jun, Qian Yu, Cao Yaru, Li Lianshui. Driving Factors and Regional Differences of Intelligent Manufacturing in China. , 2022(1): 84-93.
[1] JU J,YU X.China's opening up after 40 years:standing at a historic turning point[J].China & world economy,2018,26(2):23-49. [2] 李平,季永宝.要素价格扭曲是否抑制了我国自主创新[J].世界经济研究,2014(1):10-15. [3] 陈彦斌,林晨,陈小亮.人工智能、老龄化与经济增长[J].经济研究,2019,54(7):47-63. [4] 李廉水,石喜爱,刘军.中国制造业40年:智能化进程与展望[J].中国软科学,2019,337(1):1-9,30. [5] 温湖炜,钟启明.智能化发展对企业全要素生产率的影响——来自制造业上市公司的证据[J].中国科技论坛,2021(1):84-94. [6] 黄阳华.德国“工业4.0”计划及其对我国产业创新的启示[J].经济社会体制比较,2015(2):1-10. [7] 韩江波.智能工业化:工业化发展范式研究的新视角[J].经济学家,2017(10):21-30. [8] 贾根良.第三次工业革命与工业智能化[J].中国社会科学,2016(6):87-106. [9] 林汉川,汤临佳.新一轮产业革命的全局战略分析——各国智能制造发展动向概览[J].人民论坛·学术前沿,2015(11):62-75. [10] ACEMOGLU D,RESTREPO P.Robots and jobs:evidence from US labor markets[J].Journal of political economy,2020,128(6):2188-2244. [11] LENE K,NIKOLAJ M,JAN R S,et al.Automation and productivity—a cross-country,cross-industry comparison[J].Industrial and corporate change,2020,29(2):265-287. [12] LIU X Y,CHENG Q,GUO K.Influencing factors of intelligent manufacturing:empirical analysis based on SVR model[J].Procedia computer science,2017,122:1024-1030. [13] 孙早,侯玉琳.工业智能化如何重塑劳动力就业结构[J].中国工业经济,2019(5):61-79. [14] 李廉水,刘军,程中华.中国制造业发展研究报告2019:中国制造40年与智能制造[M].北京:科学出版社,2019. [15] 李磊,徐大策.机器人能否提升企业劳动生产率?——机制与事实[J].产业经济研究,2020(3):127-142. [16] THOMAS M K.The rise of technology and its influence on labor market outcomes[J].Gettysburg economic review 2017:10(1):3-27. [17] HOEDEMAKERS L.The changing nature of employment:how technological progress and robotics shape the future of work[D].Lund University Master Thesis,2017. [18] LIU J,LIU L,QIAN Y,et al.The effect of artificial intelligence on carbon intensity:evidence from China's industrial sector[J/OL].Socio-economic planning sciences,2021:101002.https://doi.org/10.1016/j.seps.2020.101002. [19] 苏贝,杨水利.基于扎根理论的制造企业智能化转型升级影响因素研究[J].科技管理研究,2018,38(8):115-123. [20] 岳孜.《中国制造2025》背景下制造业智能化发展分析[J].社会科学战线,2016(11):261-264. [21] 孟凡生,赵刚.传统制造向智能制造发展影响因素研究[J].科技进步与对策,2018,35(1):66-72. [22] 任锦鸾,郑海昊,曹文,等.技术创新驱动媒体智能化测度研究[J].科研管理,2018,39(S1):254-261. [23] 尹华,余昊,谢庆.基于价值链优化的制造企业智能化转型升级研究[J].中国科技论坛,2021(3):113-122. [24] 胡迟.制造业转型升级的“十二五”成效与“十三五”发展对策[J].经济纵横,2016(10):64-69. [25] 李健旋.中国制造业智能化程度评价及其影响因素研究[J].中国软科学,2020(1):154-163. [26] 吕铁,韩娜.智能制造:全球趋势与中国战略[J].人民论坛·学术前沿,2015(11):6-17. [27] 黄群慧,贺俊.“第三次工业革命”与中国经济发展战略调整——技术经济范式转变的视角[J].中国工业经济,2013(1):5-18. [28] PORTER M E.Competitive advantage of nations:creating and sustaining superior performance[M].New York:Simon and Schuster,2011. [29] 张挺,李闽榕,徐艳梅.乡村振兴评价指标体系构建与实证研究[J].管理世界,2018,34(8):99-105. [30] 张伯旭,李辉.推动互联网与制造业深度融合——基于“互联网+”创新的机制和路径[J].经济与管理研究,2017,38(2):87-96. [31] 柳卸林,高太山.中国区域创新能力报告[M].北京:知识产权出版社. [32] 盛光华,张志远.补贴方式对创新模式选择影响的演化博弈研究[J].管理科学学报,2015,18(9):34-45. [33] 彭涛,吴文良.绿色GDP核算——低碳发展背景下的再研究与再讨论[J].中国人口·资源与环境,2010,20(12):81-86. [34] ORLIC E,HASHI I,HISARCIKLILAR M.Cross sectoral FDI spillovers and their impact on manufacturing productivity[J].International business review,2018,27(4):777-796. [35] 康志勇.出口贸易与自主创新——基于我国制造业企业的实证研究[J].国际贸易问题,2011(2):35-45. [36] 于鹏,李鑫,张剑,等.环境规制对技术创新的影响及其区域异质性研究——基于中国省级面板数据的实证分析[J].管理评论,2020,32(5):87-95. [37] WOOLDRIDGE J M.Econometric analysis of cross section and panel data[M].Massachusetts:MIT Press,2002.