Abstract:In order to clarify the dynamic evolution law of international trade dependence on high-tech products and provide enlightenment for the development of high-tech industry,based on TERGM dynamic complex social network analysis method,this paper applies the bilateral trade flow data of high-tech products from 1995 to 2019 from BACI-CEPII database,and explores the deep evolution mechanism behind the dependence of high-tech products trade on complex network.The results show the followings.In spatial structure,“rising in the east and falling in the west”and“great convergence”are the important characteristics of the dependence network of international high-tech products trade;In terms of evolutionary mechanism,technology regulation aims to enhance the convergence effect and lock-in effect of dependent network,but the existence of interdependence effect and transmission effect provides a breakthrough for breaking the vertical and horizontal power relationship in the network;From the perspective of entry and exit mechanism and product classification,diversification is the objective law of the evolution of international high-tech product trade dependence on network;This paper further expands the analysis of the evolution mechanism of international trade dependence on high-tech products,and provides enlightenment for the development of China's high-tech industry.
亢梅玲, 张翔, 马新宇. 国际高科技产品贸易依赖拓扑关系演化机制研究[J]. 中国科技论坛, 2023(1): 151-160.
Kang Meiling, Zhang Xiang, Ma Xinyu. Study on the Evolutionary Mechanism of International High-Tech Product Trade Dependence Topological Relationship. , 2023(1): 151-160.
[1]SCHOTT P K.The relative sophistication of Chinese exports[J].Economic policy,2008,23(53):6-49. [2]KOOPMAN R,WANG Z,WEI S J.Tracing value-added and double counting in gross exports[J].American economic review,2014,104(2):459-94. [3]MILLER R E,TEMURSHOEV U.Output upstreamness and input downstreamness of industries/countries in world production[J].International regional science review,2017,40(5):443-475. [4]FRITSCH U,GÖRG H.Outsourcing,importing and innovation:evidence from firm-level data for emerging economies[J].Review of international economics,2015,23(4):687-714. [5]唐宜红,张鹏杨.中国企业嵌入全球生产链的位置及变动机制研究[J].管理世界,2018,34(5):28-46. [6]DU S,BHATTACHARYA C B,SEN S.Reaping relational rewards from corporate social responsibility:the role of competitive positioning[J].International journal of research in marketing,2007,24(3):224-241. [7]KANDOGAN Y.Topological properties of the international trade network using modified measures[J].The international trade journal,2018,32(3):268-292. [8]段德忠,杜德斌.全球高科技产品贸易结构演化及影响因素[J].地理学报,2020,75(12):2759-2776. [9]刘林青,闫小斐,杨理斯,等.国际贸易依赖网络的演化及内生机制研究[J].中国工业经济,2021(2):98-116. [10]LEIFELD P,CRANMER S J,DESMARAIS B A.Temporal exponential random graph models with btergm:estimation and bootstrap confidence intervals[J].Journal of statistical software,2018,83:1-36. [11]HAUSMANN R,HIDALGO C A,BUSTOS S,et al.The atlas of economic complexity:mapping paths to prosperity[J].HKS center for international development and MIT media lab,2011,10:26. [12]EMERSON R M.Power-dependence relations[J].American sociological review,1962,27(1):31-41. [13]DE BENEDICTIS L,NENCI S,SANTONI G,et al.Network analysis of world trade using the BACI-CEPII dataset[J].Global economy journal,2014,14(3-4):287-343. [14]FARRELL H,NEWMAN A L.Weaponized interdependence:how global economic networks shape state coercion[J].International security,2019,44(1):42-79. [15]KEOHANE R O,NYE JR J S.Power and interdependence in the information age[J].Foreign Aff.,1998,77:81. [16]RAMÍREZ R,MANNERVIK U.Strategy for a networked world[M].London:World Scientific Publishing Company,2016. [17]BORGATTI S P,CROSS R.A relational view of information seeking and learning in social networks[J].Management science,2003,49(4):432-445. [18]LUSHER D,KOSKINEN J,ROBINS G.Exponential random graph models for social networks:theory,methods,and applications[M].Cambridge:Cambridge University Press,2013. [19]DAVIS J A.The structure of positive interpersonal relations in small groups[J].Sociological theories in progress,1970,2:218-251. [20]LAMBERT N A.Planning armageddon:British economic warfare and the first world war[M].Cambridge:Harvard University Press,2012. [21]LEIFELD P,CRANMER S J.A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model[J].Network science,2019,7(1):20-51. [22]KRIVITSKY P N,HANDCOCK M S.A separable model for dynamic networks[J].Journal of the royal statistical society:series B,2014,76(1):29-46.