Abstract:The industrial policy for digital transformation is pivotal in the digital transformation of enterprises.National and regional governments,along with various functional bodies,have been proactive in introducing relevant policies to facilitate enterprise transformation and modernization.Nevertheless,it remains to be evaluated whether there are problems in the dynamic nature of policy theme,the synergy among policy actors,and the application of policy tools.Drawing upon policy documents pertaining to enterprise digital transformation from 2007 to 2022,this study combines LDA topic modeling,co-occurrence analysis,and computational techniques to assess textual semantic similarity,employs text mining within the tripartite framework of“Theme-Actor-Tool”,and employs visualization techniques for result presentation.The study reveals:①A thematic progression from“informatization development”to“datafication development”,and ultimately“intelligent development”;②An evolution in the network structure of policy actors from“loose”to“loosely coupled multi-actor”,and finally“tightly coupled multi-actor”configurations;③A pattern in policy tool application characterized by a“strong supply,moderate environmental focus,and weak demand”,with a notable deficiency in the deployment of secondary policy tools such as“public services”,“data systems”,and“service outsourcing”.In light of these findings,the study advocates for strategic foresight in policy theme development and the reinforcement of actor coordination mechanisms,and other related aspects.
刘玉斌, 能龙阁, 薛玉香. 基于政策“主题-主体-工具”维度的企业数字化转型产业政策演化研究[J]. 中国科技论坛, 2024(10): 76-85.
Liu Yubin, Neng Longge, Xue Yuxiang. Based on the“Theme-Actor-Tool” Dimension Research on the Evolution of Industrial Policy for Enterprise Digital Transformation. , 2024(10): 76-85.
[1]戚聿东,肖旭.数字经济时代的企业管理变革[J].管理世界,2020,36(6):135-152,250. [2]肖静华.企业跨体系数字化转型与管理适应性变革[J].改革,2020(4):37-49. [3]江小涓,靳景.数字技术提升经济效率:服务分工、产业协同和数实孪生[J].管理世界,2022,38(12):9-26 [4]姚小涛,亓晖,刘琳琳,等.企业数字化转型:再认识与再出发[J].西安交通大学学报(社会科学版),2022,42(3):1-9. [5]尚洪涛,宋岸玲.工业互联网产业政策促进了企业数字化转型吗[J].科学学研究,2023,41(11):1991-2003,2072. [6]孙伟增,毛宁,兰峰,等.政策赋能、数字生态与企业数字化转型:基于国家大数据综合试验区的准自然实验[J].中国工业经济,2023(9):117-135. [7]刘玉斌,能龙阁,苏畅,等.电商政策的数字化效应:作用机制与双重溢出[J].产业经济研究,2024(1):85-98. [8]华斌,康月,范林昊.中国高新技术产业政策层级性特征与演化研究:基于1991—2020年6043份政策文本的分析[J].科学学与科学技术管理,2022,43(1):87-106. [9]裴瑞敏,姜影,肖尤丹.科技人才政策变迁与政策主体协同网络演化研究:基于对1978—2020年政策文本的分析[J].科学学与科学技术管理,2022,43(8):32-46. [10]李玥,钱科研,王卓,等.新兴产业创新政策演进研究:基于政策文本的三维分析[J].中国科技论坛,2023(1):10-18. [11]ZHANG W,ZHAO S,WAN X.Industrial digital transformation strategies based on differential games[J].Applied Mathematical Modelling,2021,98(10):90-108. [12]ZHU Z,SONG T,HUANG J,et al.Executive cognitive structure,digital policy,and firms'digital transformation[J].IEEE Transactions on Engineering Management,2024,71(1):2579-2592. [13]陶长琪,丁煜.数字经济政策如何影响制造业企业创新:基于适宜性供给的视角[J].当代财经,2022(3):16-27. [14]SHTETS T,LUPAK R,VASYLTSIV T.General aspectsof state policy for the digital transformation of the national economy[J].International Independent Scientific Journal,2020,20(2):14-19. [15]FOSTER C,AZMEH S.Latecomer economies and national digital policy:an industrial policy perspective[J].The journal of Development Studies,2020,56(7):1247-1262. [16]王雪原,李雪琪.技术-组织-环境框架下数字化政策组合研究[J].科学学研究,2022,40(5):841-851. [17]王宏起,赵天一,李玥.产业创新生态系统数字化转型的政策组合研究[J].中国软科学,2023(10):119-131. [18]孔文豪,陈玲.数字经济的政策工具创新和组合初探:基于大数据产业政策的模糊集定性比较分析[J].中国科技论坛,2023(9):59-68. [19]王伟光,宋洪玲.数字经济支持政策工具的量化评价:基于省际层面政策的文本分析[J].中国科技论坛,2023(6):97-107. [20]卜令通,张嘉伟.基于PMC指数模型的数字经济政策量化评价[J].统计与决策,2023,39(7):22-27. [21]何帆,刘红霞.数字经济视角下实体企业数字化变革的业绩提升效应评估[J].改革,2019(4):137-148. [22]师博,常青,张良悦.中国数字经济发展的政策演进与理论研究脉络[J].技术经济,2022,41(8):1-10. [23]彭志文.全球数字经济标杆城市建设的“政策缺口”:基于北京市政策内容的量化分析[J].北京社会科学,2023(9):72-82. [24]陈美,孙瑞乾.政策工具视域下我国省级数字经济政策文本的量化分析:基于LDA的主题社会网络分析[J].情报杂志,2023,42(11):174-182. [25]ZHANG J,CHEN M,BALLESTEROS-PEREZ P,et al.A new framework to evaluate and optimize digital transformation policies in the construction industry:a China case study[J].Journal of Building Engineering,2023,70(8):106388. [26]WANG Z,ZHANG F,REN M,et al.A new multifractal-based deep learning model for text mining[J].Information Processing & Management,2024,61(1):103561. [27]WARE C.Information visualization:perception for design[M].San Francisco:Morgan Kaufmann,2019. [28]ALKAN B B,KARAKUS L,DIREKCI B.Knowledge discovery from the texts of Nobel Prize winners in literature:sentiment analysis and Latent Dirichlet Allocation[J].Scientometrics,2023,128(9):5311-5334. [29]CHAUHAN U,SHAH A.Topic modeling using latent Dirichlet allocation:a survey[J].ACM Computing Surveys(CSUR),2021,54(7):1-35. [30]SARSENBAYEVA Z,VAN BERKEL N,HETTIACHCHI D,et al.Mapping 20 years of accessibility research in HCI:aco-word analysis[J].International Journal of Human-Computer Studies,2023,175(7):103018. [31]CHANDRASEKARAN D,MAGO V.Evolution of semantic similarity—a survey[J].ACM Computing Surveys(CSUR),2021,54(2):1-37. [32]胡增玺,马述忠.市场一体化对企业数字创新的影响——兼论数字创新衡量方法[J].经济研究,2023,58(6):155-172. [33]吴杨.大数据政策文本与现实的偏差及完善路径研究[J].公共管理学报,2020,17(1):31-46,169-170.