Abstract:Combined with cloud model and probabilistic dominance relation,A multi-criteria decision making method based on cloud probabilistic dominance relation is proposed in this paper.The method is used to research the level and volatility of high-tech industry regional cooperative innovation capability of six regions and eighteen provinces(municipalities)in China from 2010 to 2015.This article explores the level and volatility of regional collaborative innovation ability,and classifies them from three aspects including “comprehensive ability level-volatility”,“innovation environment level-volatility” and “input-output”.The research shows that there are significant differences in the level and volatility of the regional innovation ability among the regions and provinces(municipalities)in the high-tech industry.The regions and provinces(municipalities)can take the effective measures to improve the cooperative innovation capability of high-tech industry based on the characteristics of their corresponding type.
袁旭梅, 张旭, 王亚娜. 中国高新技术产业区域协同创新能力评价与分类[J]. 中国科技论坛, 2018(9): 13-21.
Yuan Xumei, Zhang Xu, Wang Yana. Evaluation and Classification of Regional Cooperative Innovation Capability of High-Tech Industry in China. , 2018(9): 13-21.
[1]ROLF S.Innovation networks and regional development—evidence from the European regional innovation survey(ERIS):theoretical concepts,methodological approach,empirical basis and introduction to the theme issue[J].European planning studies,2000,8(4):389-407. [2]BOLY V,MOREL L,ASSIELOU N G,et al.Evaluating innovative processes in french firms:methodological proposition for firm innovation capacity evaluation[J].Research policy,2014,43(3):608-622. [3]ZHAO S L,SONG W,ZHU D Y,et al.Evaluating China's regional collaboration innovation capability from the innovation actors perspective:an AHP and cluster analytical approach[J].Technology in society,2013,35(3):182-190. [4]JON M,ZABALA-Iturriagagoitia,PETER Voigt,ANTONIO Gutiérrez-Gracia,et al.Regional innovation systems:how to assess performance[J].Regional studies,2007,41(5):661-672. [5]PINTO H,GUERREIRO J.Innovation regional planning and latent dimensions:the case of the Algarve region[J].Annals of regional science,2010,44(2):315-329. [6]XIAO X Y,YANG L W.A comparative study of regional innovation capability of China based on TOPSIS method[C].International conference on business management and electronic information.IEEE,2011:579-582. [7]臧维,秦凯,于畅.基于资源视角的京津冀高新技术产业协同创新研究[J].华东经济管理,2015,29(2):47-54. [8]鲁继通.京津冀区域协同创新能力测度与评价[J].科技管理研究,2015(24):165-170. [9]刘伟.考虑环境因素的高新技术产业技术创新效率分析:基于2000—2007年和2008—2014年两个时段的比较[J].科研管理,2016,37(11):18-25. [10]贺灵.区域协同创新能力测评及增进机制研究[D].长沙:中南大学,2013:48-60. [11]顾菁,薛伟贤.高技术产业协同创新研究[J].科技进步与对策,2012,29(11):84-89. [12]肖仁桥,钱丽,陈忠卫.中国高技术产业创新效率及其影响因素研究[J].管理科学,2012,25(5):85-98. [13]王洪庆,侯毅.中国高技术产业技术创新能力评价研究[J].中国科技论坛,2017(3):58-63. [14]张淑莲,胡丹,高素英.京津冀高技术产业协同创新研究[J].河北工业大学学报,2011,40(12):107-112. [15]李金兰,郑淑蓉.基于PCA的高新技术产业技术创新能力评价——以泉州为例[J].科技进步与对策,2010,27(16):126-130. [16]董慧梅,李月,汪建苇,侯卫真.高新技术产业创新能力的前沿型分析法[J].管理现代化,2016,36(5):58-60. [17]唐惠英,周宗放.基于粗集—熵值法的高新技术企业自主创新能力评价[J].统计与决策,2008(11):167-169. [18]郑珍远,施生旭,贺书伟.福建省高新技术产业竞争力评价研究——华东六省一市的比较分析[J].东南学术,2010(5):91-98. [19]杨国忠,颜鸷.中国高新技术产业的区域创新能力评价研究[J].工业技术经济,2015,34(9):115-122. [20]林伟华,李进金,吴宇宁.基于优势关系的多属性群决策方法[J].计算机工程与应用,2017(4):1-7. [21]JIMENEZ A,MATEOS A,SABIO P.Dominance intensity measure within fuzzy weight oriented MAUT:an application[J].Omega,2013,41(2):397-405. [22]GRECO S,MATARAZZO B,SOWISKI R.Rough sets theory for multicriteria decision analysis[J].European journal of operational research,2001,129(1):1-47. [23]翁世洲,吕跃进.区间粗糙数的排序方法及其应用[J].南京大学学报(自然科学),2015(4):818-825. [24]李柏敏,翁世洲,吕跃进.基于粗糙集的广西区域物流竞争力综合评价[J].济南大学学报(自然科学版),2016(5):341-346. [25]PETER A G.Swarm creativity:competitive advantage through collaborative innovation networks[M].New York:Oxford University Press,2006:76-81.