Spatial Unbalance Character and Dynamic Trends Analysis of Regional Technological Innovation in China
Zhao Qiaozhi1, Yan Qingyou2
1. Department of Economics and Management, North China Electric and Power University, Baoding 071003, China; 2. School of Economics and Management, North China Electric and Power University, Beijing 102202, China
Abstract:From perspective of spatial distribution,this paper investigates the unbalance state and dynamic trends of technological innovations in China,and provides references for innovation-leading development transition.Results are as follows.First,unbalance state varied in a medium-high range and presented an inverted U-shaped trend from long-term rise to rapid decline.The year 2011 was the turning point.Variations among regions contributed the most to this trend,and the next was within-region variations.Second,the different innovation types positively affected the distribution trend,with strategic innovations playing the dominate role and substantive innovations developing at a relatively slower speed.Third,the low-level and high-level innovation output types have high probabilities of state self-locking,which are 92% and 99% respectively.Hence,there are opportunities and challenges simultaneously in China's technological innovation development.State jumping-up probabilities of medium-low and medium-high type are more than the other two.Transition probability from medium-low to high-level is 26% and to high-level state is 5%.Probability transiting from medium-high to high-level is 47% while it is 6% to medium-low state.This evolution of spatial equality is a long run process,with high-level provinces projected to reach 85% and 95% in the year of 2030 and 2050 respectively.Hence,it is suggested that policies should be issued to encourage high-quality technological innovation outputs represented by the key technologies and cutting-edge technologies and to improve the spatial spillover channels so that inter-regional development synergy could be achieved to realize technology-leading economic development.
[1]黄汉权.利用创新技术,推动新旧动能转换[N].中国科学报,2019-11-07 (6). [2]魏婕,安同良.面向高质量发展的中国创新驱动[J].中国科技论坛,2020 (1):33-40. [3]辜胜阻,吴华君,吴沁沁,等.创新驱动与核心技术突破是高质量发展的基石[J].中国软科学,2018 (10):9-18. [4]梁中,徐蓓.中国省域碳压力空间分布及其中心迁移[J].经济地理,2017 (2):179-186. [5]梁中,昂昊.中国绿色技术创新效率及其空间治理[J].财贸研究,2019 (8):16-25. [6]宋昌耀,李国平,李沅曦.中国保险业的空间分异及其经济绩效─基于地级以上城市的分析[J].保险研究,2019 (9):30-43. [7]BACUA S,GRDINARUB S R,HERSPERGERA A M.Spatial plans as relational data:using social network analysis to assess consistency among Bucharest's planning instruments[J].Land use policy,2020 (92):104484. [8]张建伟,梁常安,黄蕊琦,等.中部地区创新产出空间差异及影响因素研究——基于新经济地理学的视角[J].世界地理研究,2020,29 (1):156-167. [9]MOHNEN P,DEBRESSON C.Explaining and estimating propensities to innovate in China in 1993[C].The 14th International Conference on Input-Output techniques,Canada,2002,Part four:1-37 and Part five:1-32. [10]宋丽思,陈向东.我国四大城市群区域创新空间极化趋势的比较研究[J].中国软科学,2009 (10):100-108. [11]YANG F X,YANG M.Analysis of China's eco-innovations:regional context,intertemporal change and regional differences[J].European journal of operational research,2015,247 (3):1003-1012. [12]LI X B.Exploring the spatial heterogeneity of entrepreneurship in Chinese manufacturing industries[J].The journal of technology transfer,2017,42 (5):1077-1099. [13]卢娜,王为东,王淼,等.突破性低碳技术创新与碳排放:直接影响与空间溢出[J].中国人口·资源与环境,2019 (5):30-39. [14]PAGLIACCI F,PAVONE P,RUSSO M,et al.Regional structural heterogeneity:evidence and policy implications for RIS3 in macro-regional strategies[J].Regional studies,2019 (8):1635689. [15]DU J L,LIU Y,DIAO W X.Assessing regional differences in green innovation efficiency of industrial enterprises in China[J].International journal of environmental research and public health,2019,16 (6):940-963. [16]王春杨,孟卫东.制造业转移、知识溢出与区域创新空间演进[J].科研管理,2019,40 (9):75-84. [17]刘洪愧,刘霞辉.构建开放型经济新空间布局:理论基础、历史实践与可行路径[J].改革,2019 (1):30-42. [18]鞠建东,陈骁.新新经济地理学多地区异质性结构的量化分析:文献综述[J].世界经济,2019 (9):3-26. [19]冯南平,魏芬芬.创新要素流动的影响因素及其时间差异分析[J].中国科技论坛,2017 (2):114-120. [20]刁秀华,李姣姣,李宇.高技术产业的企业规模质量、技术创新效率及区域差异的门槛效应[J].中国软科学,2018 (11):184-192. [21]王彩明,李健.中国区域绿色创新绩效评价及其时空差异分析——基于2005—2015年的省际工业企业面板数据[J].科研管理,2019 (6):29-42. [22]LIU C,GAO X,MA W,et al.Research on regional differences and influential factors of green technology innovation efficiency of China's high-tech industry[J].Journal of computational and applied mathematics,2020 (369):1-11. [23]DAGUM C.A new approach to the decomposition of the Gini income inequality ratio[J].Empirical economics,1997,22 (4):515-531. [24]LAU P L,KOO RAY T R.A multilevel Gini decomposition approach to measuring the geographic concentration of tourism[J].Current issues in tourism,2017 (8):883-893. [25]刘帅.中国经济增长质量的地区差异与随机收敛[J].数量经济技术经济研究,2019 (7):3-23. [26]刘华军,石印,雷名雨.碳源视角下中国碳排放的地区差距及其结构分解[J].中国人口.资源与环境,2019,29 (8):87-93. [27]郭劲光,尹云龙.基于空间马尔科夫链方法的省域贫困动态分析[J].社会科学战线,2018 (4):266-270. [28]吕林,许威,向月,等.基于马尔科夫链充电负荷预测的多区域充电桩优化配置研究[J].工程科学与技术,2017,49 (3):170-178. [29]张伟丽.中国区域经济增长俱乐部趋同及其演变分析——基于时空加权马尔科夫链的预测[J].经济问题,2015 (3):108-114. [30]QUAH D.Empirical cross-section dynamic in economic growth[J].European economic review,1993 (37):426-434. [31]HAN H B,DING T,NIE L,et al.Agricultural eco-efficiency loss under technology heterogeneity given regional differences in China[J].Journal of cleaner production,2020 (250):119511. [32]范德成,宋志龙.中国工业技术创新动力区域差异与影响因素研究[J].经济问题探索,2018 (11):86-96. [33]PRUD'HOMME D.Utility model patent regime “Strength”and technological development:experiences of China and other eastern Asian latecomers[J].China economic review,2017 (42):50-73. [34]毛昊,尹志锋,张锦.中国创新能够摆脱 “实用新型专利制度使用陷阱”吗[J].中国工业经济,2018 (3):98-115. [35]林毅夫.发展战略、自生能力和经济收敛[J].经济学 (季刊),2002,1 (2):269-300. [36]黎文靖,郑曼妮.实质性创新还是策略性创新?——宏观产业政策对围观企业创新的影响[J].经济研究,2016 (4):60-73.