Analysis on the Distribution,Evolution and Cooperative Innovation Network of Artificial Intelligence Patent Technology
Liu Yanqiu1,2, Han Junmin1,2, Wang Jianguo1,2, Hua Lianlian1,2
1. School of Economics and Management,Inner Mongolia University of Technology,Hohhot 010051,China; 2. Inner Mongolia Modern Logistics and Supply Chain ManagementResearch Center,Hohhot 010051,China
Abstract:Based on the patent retrieval data,starting from three dimensions of technology theme distribution,evolutionary path and cooperative innovation network,using the social network analysis method and visual analysis of Gephi software to analyze the patent data of artificial intelligence(AI)in China,the United States,South Korea,Japan,Europe and other major countries and regions from 2000 to 2019,this paper compares and analyzes the date to explore the development status of global AI,and provides reference for China's development of AI.The results are as follows:①The theme layout of AI technology in various countries is mainly concentrated in the field of computing.China has become the key force in the global AI technology layout,and the technology clusters are strongly related.However,compared with the United States,the competitiveness of China's basic technology layer is relatively weak.Therefore,it is urgent to actively construct the theme pattern of AI technology with“core technology as the main task and multiple technologies as the auxiliary”.②All countries are committed to competing for the intelligent construction of emerging industries,but China,as a big country of traditional manufacturing industry,should strengthen the intelligent upgrading of traditional manufacturing industry,and build an AI ecosystem with emerging industries as technology guidance and traditional manufacturing industry as economic support.③The AI patents of China and South Korea show large-scale communities,and the joint innovation model has achieved initial results,but the overall cooperative innovation network of each country is not mature.It is the general trend of the future development of AI industry to strengthen cross domain and cross regional joint innovation and build a diversified network system of AI.
刘艳秋, 韩俊敏, 王建国, 华连连. 人工智能专利技术分布、演化及合作创新网络分析[J]. 中国科技论坛, 2021(3): 64-74.
Liu Yanqiu, Han Junmin, Wang Jianguo, Hua Lianlian. Analysis on the Distribution,Evolution and Cooperative Innovation Network of Artificial Intelligence Patent Technology. , 2021(3): 64-74.
[1]SCHMOOKLER J.Changes in industry and in the state of knowledge as determinants of industrial invention[C]//NELSON R R.The rate and direction of inventive activity.Princeton:Princeton University Press,1962:195-232. [2]BLIND K,EDLER J,FRIETSCH R,et al.Motives to patent:empirical evidence from Germany[J].Research policy,2006,35(5):655-672 [3]倪晓宁.面向2035年科技创新促进人类命运共同体构建[J].中国科技论坛,2020(4):1. [4]European Commission.Communication Artificial Intelligence for Europe[EB/OL].[2019-05-10].https://ec.europa.eu/digital-single-market/en/news/communication-artificial-intelligence-europe. [5]DARPA.DARPA announces MYM2 Billion campaign to develop next wave of AI technologies[EB/OL].[2019-05-10].https://www.darpa.mil/news-events/2018-09-07. [6]TIM D,BRENT B,GAGA B.Building an AI world:report on national and regional AI strategies[EB/OL].[2019-05-10].https://www.cifar.ca /cifarnews/2018/12/06/building-an-ai-world-report-on-national-and-regional-ai-strategies. [7]李牧南,王雯殊.基于文本挖掘的人工智能科学主题演进研究[J].情报杂志,2020,39(6):82-88. [8]中国信通院,Gartner.2018世界人工智能产业发展蓝皮书[R/OL].(2018-09-17)[2019-05-30].http://www.databanker.cn/policy/233743.html. [9]WIPO.WIPO Technology trends 2019:artificial intelligence[R/OL].(2019-01-01)[2019-05-30].https://www.wipo.int/publications/en/details.jsp?id=4386. [10]科技部新一代人工智能发展研究中心,中国科学技术发展战略研究院.中国新一代人工智能发展报告2019[R/OL].(2019-05-24)[2019-05-30].http://www.gov.cn/xinwen/2019-05/26/content_5394817.htm. [11]IEC White Paper.Artificial intelligence across industries[R/OL].(2018-12-06)[2019-05-30].https://basecamp.iec.ch/download/iec-white-paper-artificial-intelligence-across-industries-en/. [12]高楠,彭鼎原,傅俊英,等.基于专利IPC分类与文本信息的前沿技术演进分析——以人工智能领域为例[J].情报理论与实践,2020,43(4):123-129. [13]方世世,周立军,杨静,等.国家标准合作网络结构特征及驱动模式——以数字经济领域为例[J].中国科技论坛,2020(5):82-90+117. [14]李哲,李娟,李章杰,等.日本人工智能战略及人才培养模式研究[J].现代教育技术,2019,29(12):21-27. [15]KARKIM M S.Patent citation analysis:a policy analysis tool[J].World patent information,1997,19(4):269-272. [16]邱洪华,王斌.基于专利质量指标的中美挥发性有机物治理技术创新活动评价[J].中国科技论坛,2020(5):163-172. [17]万小丽.专利质量指标中“被引次数”的深度剖析[J].情报科学,2014,32(1):68-73. [18]朱巍,陈慧慧,田思媛,等.人工智能:从科学梦到新蓝海——人工智能产业发展分析及对策[J].科技进步与对策,2016,33(21):66-70. [19]YANG G C,LI G,LI C Y,et al.Using the comprehensive patent citation network(CPC)to evaluate patent value[J].Scientometrics,2015,105(3):1319-1346. [20]华连连,邓思捷,王建国,等.乳制品产业专利布局特征与技术创新发展研究[J].科学管理研究,2019,37(6):70-76. [21]卢文光.新兴技术产业化潜力评价及其成长性研究[D].北京:北京工业大学,2008. [22]高霞,陈凯华.合作创新网络结构演化特征的复杂网络分析[J].科研管理,2015,36(6):28-36. [23]王建国,王飞,华连连,等.内蒙古产学研合作创新网络结构演化研究[J].科学管理研究,2018,36(6):78-81. [24]吴芹,蒋伏心.创新价值链下科技服务业集聚对区域创新效率的影响[J].中国科技论坛,2020(5):128-137. [25]高霞,陈凯华.基于SIPO专利的产学研合作模式及其合作网络结构演化研究——以ICT产业为例[J].科学学与科学技术管理,2016,37(11):34-43. [26]聂洪光,范海荣.基于专利数据的中美人工智能创新能力比较研究[J].中国科技论坛,2020(5):154-162. [27]刘艳秋,从春伟,华连连,等.创业者先前经验对渐进性创新的影响机制——创业拼凑的中介作用[J/OL].(2020-05-08)[2020-06-05].http://kns.cnki.net/kcms/detail/42.1224.G3..1234.003.html.