Research on the Spatio-Temporal Characteristics and Influencing Factors of Science and Technology Talents Agglomeration of City ——Based on Empirical Data from 285 Cities
Guo Jinhua1, Guo Shufen2, Guo Mengnan3
1. School of Business Administration,Shanxi University of Finance and Economics,Taiyuan 030006,China; 2. Cooperative Innovation Center for Transition of Resource-based Economies,Shanxi University of Finance and Economics,Taiyuan 030006,China; 3. School of Accounting,Shanxi University of Finance and Economics,Taiyuan 030006,China
Abstract:Based on the data of 285 cities in China from 2007 to 2017,the paper analyzes the spatio-temporal characteristics and causes of the agglomeration of science and technology talents.The results are as follows.The unbalanced pattern of the agglomeration of science and technology talents is obvious,and the cities with high agglomeration level have a “dotted” spatial distribution and are mostly provincial capitals or regional center cities.High-density “hot spot”cities are distributed in the beijing-tianjin-hebei,the Yangtze river delta and the pearl river delta,and the radiation range of multi-centers is expanding.It is possible for science and technology talents of different types to converge to a higher level,but the probability of achieving cross-level transition is low;the convergence of science and technology talents in the neighborhood has a significant influence on the convergence evolution of the region's science and technology talents,and the change direction tends to be consistent with the change direction of the neighborhood.Economic factors such as urbanization and public service factors such as urban transportation facilities play a significant role in promoting the agglomeration of science and technology talents.The innovation environment factors such as urban innovation ability and livable environment factors such as urban environment quality are the restricting factors that affect the agglomeration of science and technology talents.Moreover,the influencing factors of cities with different geographical locations and different economic development levels are different.
郭金花, 郭淑芬, 郭檬楠. 城市科技型人才集聚的时空特征及影响因素——基于285个城市的经验数据[J]. 中国科技论坛, 2021(6): 139-148.
Guo Jinhua, Guo Shufen, Guo Mengnan. Research on the Spatio-Temporal Characteristics and Influencing Factors of Science and Technology Talents Agglomeration of City ——Based on Empirical Data from 285 Cities. , 2021(6): 139-148.
[1]孙文浩,张益丰.城市抢 “人”大战有利于地区新旧动能转换吗[J].科学学研究,2019,37 (7):1220-1230. [2]牛冲槐,接民,张敏,等.人才聚集效应及其评判[J].中国软科学,2006 (4):118-123. [3]裴玲玲.科技人才集聚与高技术产业发展的互动关系[J].科学学研究,2018,36 (5):813-824. [4]CICCONE A.Agglomeration effects in Europe[J].European economic review,2002,46 (2)213-227. [5]刘兵,胡中韬,梁林.人才聚集对社会平均生产率的影响研究[J].科研管理,2019,40 (8):224-233. [6]张美丽,李柏洲.中国人才集聚时空格局及影响因素研究[J].科技进步与对策,2018,35 (22):38-44. [7]KARAHASAN B C,LQ PEZ-BAZO E.The Spatial distribution of human capital:can it really be explained by regional differences in market access[J].International regional science review,2013,36 (4):451-480. [8]孙瑜康,孙铁山,席强敏.北京市创新集聚的影响因素及其空间溢出效应[J].地理研究,2017,36 (12):2419-2431. [9]王若宇,黄旭,薛德升,等.2005—2015年中国高校科研人才的时空变化及影响因素分析[J].地理科学,2019,39 (8):1199-1207. [10]刘晔,曾经元,王若宇,等.科研人才集聚对中国区域创新产出的影响[J].经济地理,2019,39 (7):139-147. [11]郭淑芬,郭金花,赵国浩.县域创新水平时空跃迁路径与趋同演化规律分析——基于山西省县级尺度专利数据的证据[J].科技进步与对策,2019,36 (4):50-57. [12]王彬燕,王士君,田俊峰,等.中国重点产业创新产出时空分异及影响因素[J].地理研究,2019,38 (2):259-272. [13]MELLANDER C,FLORIDA R.Creativity,talent,and regional wages in Sweden[J].The annals of regional science,2011,46 (3):637-660. [14]徐倪妮,郭俊华.科技人才流动的宏观影响因素研究[J].科学学研究,2019,37 (3):414-421+461. [15]张波.2000年代以来中国省际人才的时空变动分析[J].人口与经济,2019 (3):91-101. [16]LAWTON P,MURPHY E,REDMOND D.Residential preferences of the ‘creative class'[J].Cities,2013,31:47-56. [17]LEPAWSKY J,PHAN C,GREENWOOD R.Metropolis on the margins:talent attraction and retention to the St.John's city-region[J].The Canadian geographer,2010,54 (3):324-346. [18]陶晓红,齐亚伟.中国区域经济时空演变的加权空间马尔可夫链分析[J].中国工业经济,2013 (5):31-43. [19]张虎,周迪.创新价值链视角下的区域创新水平地区差距及趋同演变——基于Dagum基尼系数分解及空间Markov链的实证研究[J].研究与发展管理,2016,28 (6):48-60. [20]QIAN H.Talent,creativity and regional economic performance:the case of China[J].Annals of regional science,2010,45 (1):133-156. [21]卓乘风,艾麦提江·阿布都哈力克,白洋,等.创新要素集聚对区域创新绩效的非线性边际效应演化分析[J].统计与信息论坛,2017,32 (10):84-90.