Research on the Mechanism,Influencing Factors and Countermeasures of Industrial Intelligence Development
Han Qiuming1, Wang Shuhua1, Yang Xuecheng2, Li Jingwang1
1. Chinese Academy of Science and Technology for Development,Beijing 100038,China; 2. Beijing University of Posts and Telecommunications,Beijing 100876,China
Abstract:The China's economy is in the transition stage from high-speed growth to high-quality development.It is very important for the high-quality development of China's economy to study the mechanism of artificial intelligence (AI)technology on industrial upgrading and the empowerment of the real economy,analyze the influencing factors that affect industrial intelligence,and propose targeted countermeasures.Systematically combing and comparing relevant domestic and foreign literature,the author interviews 14 industrial intelligence research experts by using qualitative research methods.This paper finds the followings.Foreign industrial intelligence research focuses more on algorithms and solutions while domestic research focuses on policy and factual analysis.AI technology realizes the creation of industrial value by changing the means of production,productivity and production methods and realizes the empowerment of the real economy by optimizing the industrial chain,enriching the innovation chain and expanding the value chain.Low technological maturity,difficulty in obtaining industry data,lagging digitization level,cost constraints of intelligent transformation,imperfect intelligent infrastructure,and severe shortage of talents are the main factors affecting the industrial intelligence.
韩秋明, 王书华, 杨学成, 李京望. 产业智能化的发展机理、影响因素及对策建议——基于行业专家访谈的质性研究[J]. 中国科技论坛, 2021(8): 59-69.
Han Qiuming, Wang Shuhua, Yang Xuecheng, Li Jingwang. Research on the Mechanism,Influencing Factors and Countermeasures of Industrial Intelligence Development. , 2021(8): 59-69.
[1]新华网.《中国新一代人工智能发展报告2020》在浦江创新论坛发布[EB/OL]. (2020-10-22)[2021-04-19].http://www.xinhuanet.com/tech/2020-10/22/c 1126642746.htm. [2]GOLI A,KHADEMIZARE H,TAVAKKOLI-MOGHADDAM R,et al.Hybrid artificial intelligence and robust optimization for a multi-objective product portfolio problem case study:the dairy products industry[J].Computers & industrial engineering,2019,137 (11):106090. [3]LOLLI F,GAMBERINI R,REGATTIERI A,et al.Single-hidden layer neural networks for forecasting intermittent demand[J].International journal of production economics,2017,183 (part A):116-128. [4]RELICH M,PAWLEWSKI P.A fuzzy weighted average approach for selecting portfolio of new product development projects[J].Neurocomputing,2017,231 (29):19-27. [5]TIRKOLAEE E,GOLI A,WEBER G.Multi-objective aggregate production planning model considering overtime and outsourcing options under fuzzy seasonal demand[EB/OL].[2021-04-19].https://link.springer.com/chapter/10.1007%2F978-3-030-18789-7 8. [6]MERAYO D,RODRÍGUEZ-PRIETO A,CAMACHO M.Comparative analysis of artificial intelligence techniques for material selection applied to manufacturing in industry 4.0[J].Procedia manufacturing,2019 (41):42-49. [7]I·LKER G,FUAT S.Demand forecasting with color parameter in retail apparel industry using artificial neural networks (ANN)and support vector machines (SVM)methods[J].Computers & industrial engineering,2020,147 (9):106678. [8]DONG-HYEON K,THOMAS J,KIMETC Y.Smart machining process using machine learning:a review and perspective on machining industry[J].International journal of precision engineering and manufacturing-green technology,2018 (5):555-568. [9]PARK H,TRAN N.Development of a smart machining system using self-optimizing control[J].The international journal of advanced manufacturing technology,2014 (74):1365-1380. [10]ULLAH S,MUHAMMAD I,KO T.Optimal strategy to deal with decision making problems in machine tools remanufacturing[J].International journal of precision engineering and manufacturing-green technology,2016 (3):19-26. [11]RENTSCH R,HEINZEL C.Development of a discrete event model for energy and resource efficient milling[J].Procedia CIRP,2015 (31):441-446. [12]DUFLOU J,SUTHERLAND J,DORNFELD D,et al.Towards energy and resource efficient manufacturing:a processes and systems approach[J].CIRP annals,2012,61 (2):587-609. [13]HELU M,BEHMANN B,MEIER H,et al.Impact of green machining strategies on achieved surface quality[J].CIRP annals 2012,61 (1):55-58. [14]STETTER R,WITCZAK P,SPINDLER C,et al.Intelligent systems for the prognosis of energy consumption in manufacturing and assembly[J].Procedia CIRP,2015 (33):370-375. [15]DUMITRIUA D,POPESCU M.Artificial intelligence solutions for digital marketing[J].Procedia manufacturing,2020 (46):630-636. [16]JAIN P,AGGARWAL K.Transforming marketing with artificial intelligence[J].International research journal of engineering and technology,2020,7 (7):3964-3976. [17]CAMACHO-VALLEJOA J,NUCAMENDI-GUILLÉNB S,GONZÁLEZ-RAMÍREZ R.An optimization framework for the distribution process of a manufacturing company balancing deliverymen workload and customer's waiting time[J].Computers & industrial engineering,2019 (137):106080. [18]MIKLOSIK A.Search engine marketing strategies:google answer box-related search visibility factors[EB/OL].[2021-04-19].https://www.igi-global.com/chapter/search-engine-marketing-strategies/215211. [19]PASCHEN J,PASCHEN U.Artificial intelligence (AI)and value co-creation in B2B sales:activities,actors and resources[EB /OL]. (2020-06-25)[2021-04-19].https://www.sciencedirect.com/science/article/pii/S1441358220300550. [20]KAARTEMO V,HELKKULA A.A systematic review of artificial intelligence and robots in value co-creation:current status and future research avenues[J].Journal of creating value,2018,4 (2):211-228. [21]SINGH J,FLAHERTY K,SOHI R,et al.Sales profession and and professionals in the age of digitization and artificial intelligence technologies:concepts,priorities and questions[J].Journal of personal selling & sales management,2019,39 (1):2-22. [22]MAGLIO P,BREIDBACH C.Service science:toward systematic service system innovation[EB /OL]. (2014-10-27)[2021-04-19].https://pubsonline.informs.org/doi/pdf/10.1287/educ.2014.0123. [23]师博.人工智能促进新时代中国经济结构转型升级的路径选择[J].西北大学学报 (哲学社会科学版),2019,49 (5):14-20. [24]何玉长,方坤.人工智能与实体经济融合的理论阐释[J].学术月刊,2018,50 (5):56-67. [25]万钢.能源技术和智能化发展引领汽车产业大变革[J].中国科技产业,2018 (8):8-9. [26]成青青.人工智能与实体经济融合路径研究[J].北京经济管理职业学院学报,2018,33 (4):3-9. [27]唐怀坤.与实体经济深度融合的专用人工智能阶段技术体系研究[J].通信与信息技术,2019 (2):50-54. [28]苏贝.制造业智能化转型升级影响因素及其实证研究[D].西安:西安理工大学硕士学位论文,2018. [29]任保平,宋文月.新一代人工智能和实体经济深度融合促进高质量发展的效应与路径[J].西北大学学报 (哲学社会科学版),2019,49 (5):6-13. [30]雷尚君,李勇坚.推动互联网、大数据、人工智能和实体经济深度融合[J].经济研究参考,2018 (8):50-58. [31]陈瑾,李若辉.新时代我国制造业智能化转型机理与升级路径[J].江西师范大学学报 (哲学社会科学版),2019,52 (6):145-152. [32]中华人民共和国中央人民政府.中共中央、国务院关于构建更加完善的要素市场化配置体制机制的意见[EB/OL]. (2020-04-09)[2021-01-10].http://www.gov.cn/zhengce/2020-04/09/content 5500622.htm. [33]张学义,范阿翔.基于技术成熟度曲线的人工智能审视[J].科学技术哲学研究,2019,36 (2):14-19. [34]Deloitte.Deloitte survey:state of AI in the enterprise,third edition:thriving in the era of pervasive AI[EB/OL]. (2021-03-14)[2021-03-22].https://www2.deloitte.com/us/en/pages/about-deloitte/articles/press-releases/deloitte-survey-state-of-ai-in-the-enterprise-third-edition.html. [35]袁波.大数据领域的反垄断问题研究[D].上海:上海交通大学博士学位论文,2019. [36]赵剑波.推动新一代信息技术与实体经济融合发展:基于智能制造视角[J].科学学与科学技术管理,2020,41 (3):3-16. [37]弗里曼.技术政策与经济绩效[M].南京:东南大学出版社,2008. [38]胡俊,杜传忠.人工智能推动产业转型升级的机制、路径及对策[J].经济纵横,2020 (3):94-101.