Study on the Space-Time Evolution Characteristics and its Influence Mechanism of Chinese Agricultural Science and Technology Innovation
Xu Weixiang1, Wang Rui1, Liu Chengjun2, Xu Yan1, Liu Xiaowen1
1. College of Economics,Zhejiang University of Technology,Hangzhou 310023,China; 2. Business School,Zhijiang College of Zhejiang University of Technology,Shaoxing 312000,China
Abstract:Based on the reconstructed agricultural science and technology index system,the entropy weight TOPSIS method is used to estimate the Chinese agricultural science and technology innovation level.According to the spatial auto-correlation,trend surface and spatial gravity models,its space-time evolution characteristics are analyzed and the influence mechanism is studied with the further application of the GWR model.The results reveal the followings.①China's agricultural science and technology innovation level is relatively low,and the polarization trend and level difference are large.In general,it shows a development trend of hierarchical decrease from Northeast China—North China—East China to southwest China—Northwest China.②Big variation within the region regarding the level of Chinese agricultural science and technology innovation is obvious,showing an inverted ζ-shaped trend for the spatial pattern.Meanwhile,the structure of spatial connection network has been featured by “density in the east and sparseness in the west”,revealing a big spatial connection intensity between the Northeast China and East China,indicating a spatial variation pattern where there's strong spatial triangular connection between Heilongjiang-Zhejiang-Anhui and intense cross connection between Shaanxi-Shandong,Shandong-Hubei and Shaanxi-Zhejiang.③Great positive effect has been made on agricultural science and technology innovation by the level of government support,human capital and internet+ strategy.Also rural economy level and agricultural resources in some regions have exerted a positive influence on agricultural science and technology innovation from the negative.But regional openness has negatively affected agricultural science and technology innovation in most regions.
徐维祥, 王睿, 刘程军, 徐严, 刘晓雯. 中国农业科技创新的时空演进特征及其影响机制研究[J]. 中国科技论坛, 2021(8): 108-119.
Xu Weixiang, Wang Rui, Liu Chengjun, Xu Yan, Liu Xiaowen. Study on the Space-Time Evolution Characteristics and its Influence Mechanism of Chinese Agricultural Science and Technology Innovation. , 2021(8): 108-119.
[1]吴孔明.以科技创新支撑中国农业高质量发展[J].中国经济报告,2019 (6):11-12. [2]焦贝贝,张治河,刘海猛,等.乡村振兴战略下欠发达地区农村创新能力评价——以甘肃省86个县级行政单元为例[J].经济地理,2020,40 (1):132-139+172. [3]西奥多·舒尔茨.改造传统农业[M].梁小民,译.北京:商务印书馆,2010. [4]SULAIMAN V R,Hall A.Beyond technology dissemination:reinventing agricultural extension[J].Outlook on agriculture,2002,31 (4):225-233. [5]AUBERT B A,SCHROEDER A,GRIMAUDO J.IT as enabler of sustainable farming:an empirical analysis of farmers’ adoption decision of precision agriculture technology[J].Decision support systems,2012,54 (1):510-520. [6]GREMMEN B,BLOK V,BOVENKERK B.Responsible innovation for life:five challenges agriculture offers for responsible innovation in agriculture and food,and the necessity of an ethics of innovation[J].Journal of agricultural and environmental ethics,2019,32 (5):673-679. [7]MEIJER S S,CATACUTAN D.AJAYI O C,et al.The role on knowledge,attitudes and perception in the uptake of agriculture and agroforestry innovations among small holder farmers in sub-Saharan Africa[J].International journal of agricultural sustainability,2015,13 (1):40-54. [8]PATHAK H S,BROWN P,BEST T.A systematic literature review of the factors affecting the precision agriculture adoption process[J].Precision agriculture,2019,20 (1):1292-1316. [9]MEKONNEN D K,SPIELMAN D J,FONSAH E G.Innovation systems and technical efficiency in developing-country agriculture[J].Agriculture economics,2015,46 (5):689-702. [10]史焱文,李二玲,李小建.农业创新系统研究脉络及启示[J].经济地理,2014,34 (3):10-16. [11]肖树忠.地市级农业技术创新体系研究[D].北京:中国农业科学院,2006. [12]辛晓睿,刘刚,曾刚.上海农业创新网络及其空间结构研究[J].世界地理研究,2017,26 (6):110-118. [13]方远平,谢蔓.创新要素的空间分布及其对区域创新产出的影响——基于中国省域的ESDA-GWR分析[J].经济地理,2012,32 (9):8-14. [14]李兆亮,罗小锋,张俊飚,等.中国农业科研投资结构的时空分异特征及其驱动因素[J].经济地理,2016,36 (12):112-118. [15]陈祺琪,张俊彪,程琳琳,等.农业科技资源配置能力区域差异分析及驱动因子分解[J].科研管理,2016 (3):110-123. [16]杜挺,谢贤健,梁海艳,等.基于熵权TOPSIS和GIS的重庆市县域经济综合评价及空间分析[J].经济地理,2014,34 (6):40-47. [17]王锐淇.我国区域技术创新能力空间相关性及扩散效应实证分析——基于1997—2008空间面板数据[J].系统工程理论与实践,2012,32 (11):2419-2432. [18]杨丽霞,杨桂山,姚士谋,等.基于ESDA-GWR的粮食单产及其驱动因子的空间异质性研究[J].经济地理,2012,32 (6):120-126. [19]陈萌山.加快体制机制创新 提升农业科技对现代农业发展的支撑能力[J].农业经济问题,2014,35 (10):4-7. [20]林青宁,孙立新,毛世平.协同创新对中国农业科研院所创新产出影响研究——基于研发禀赋结构的双门槛效应[J].农业技术经济,2018 (7):71-79. [21]吴建寨,杨海成,李斐,等.发达国家农业科技创新体系及其经验借鉴[J].世界农业,2016 (9):157-161. [22]谷国锋,许瑛航.中国地级市电子商务发展水平的空间格局及影响因素[J].经济地理,2019,39 (10):123-129. [23]王雪锋,谷国锋.基于市场潜能的城市经济增长空间格局及溢出效应[J].地理科学,2017,37 (11):1617-1623. [24]刘程军,王周元晔,杨增境,等.多维邻近视角下长江经济带区域金融空间联系特征及其影响机制[J].经济地理,2020,40 (4):134-144. [25]徐维祥,张凌燕,刘程军,等.城市功能与区域创新耦合协调的空间联系研究——以长江经济带 107 个城市为实证[J].地理科学,2017,37 (11):1659-1667. [26]孙才志,马奇飞,赵良仕.基于GWR模型的中国水资源绿色效率驱动机理[J].地理学报,2020,75 (5):1022-1035. [27]高寿华,刘程军,陈国亮.生产性服务业与制造业协同集聚研究——基于长江经济带的实证分析[J].技术经济与管理研究,2018 (4):122-128. [28]易高峰,刘成.江苏省城市创新能力的地区差异及影响因素分析[J].经济地理,2018,38 (10):155-162. [29]张志新,林立,黄海蓉.农业技术进步的农民增收效应:来自中国14个农业大省的证据[J].中国科技论坛,2020 (9):138-147. [30]姜玲,叶选挺,李磊.我国农业科技 “技术-知识”创新的空间耦合协调格局研究[J].管理评论,2017,29 (9):122-132.