Measure the Uncertainty of Technology Innovation Productivity According the FAVAR
Wang Bihao1, Liang Rongcheng2
1. School of Economics and Management,East China Jiaotong University,Nanchang 330013,China; 2. School of Labor and Human Resources of Renmin University of China,Beijing 100872,China
Abstract:Extracting the common factors from the large data set,consisting the predictor with the unobserved variables together,the paper constructs the factor augmented vertical auto-regression (FAVAR)model.In order to analyze the components of the technology innovation productivity (TIP)uncertainty variance,the model can measure its uncertainty degree accurately.The results are as follows.①The shock of the uncertainty of the TIP has the level effect,the scale effect and the sustained effect.②The level effect has the line shock,and the others are the non-linear shock.③The TIP uncertainty degree can be expressed as the auto-regression stochastic volatility,the structural components are caused with the auto-regression perturbation terms,the common factors and the unobserved variables.The research significant is insisting on the productivity direction,decreasing stochastic factors shock during TIP uncertainty volatility through optimizing factors allocation and running coordination innovation,making it rising continually and steady.
王必好, 梁荣成. 基于FAVAR模型的技术创新效率不确定性测度[J]. 中国科技论坛, 2021(10): 40-49.
Wang Bihao, Liang Rongcheng. Measure the Uncertainty of Technology Innovation Productivity According the FAVAR. , 2021(10): 40-49.
[1]BLOOM N.The impact of uncertainty shocks[J].Econometrical,2009 (77):623-685. [2]BLOOM N,FLOETOTTO M,JAIMOVICH N,et al.Really uncertain business cycles[R].NBER working paper,No.18245,2012. [3]BACHMANN R,ELSTNER S,SIMS E R.Uncertainty and economic activity:evidence from business survey data[J].American economic journal:macroeconomics,2013 (5):217-249. [4]DÁMICO S,ORPHANIDES A.Uncertainty and disagreement in economic forecasting[R].Federal reserve board working paper No.38421,2008.[5]LAHIRI K,SHENG X.Measuring forecast uncertainty by disagreement:the miss link[J].Journal of applied econometrics,2010 (25):514-538. [6]高铁梅,梁云芳,何光剑.中国季度宏观经济政策分析模型——对宏观经济政策效应的模拟分析[J].数量经济技术经济研究,2007 (11):3-14. [7]STOCK J H,WATSON M W.Macroeconomic forecasting using diffusion indexes[J]Journal of business and economic statistics,2002b,20 (2),147-162. [8]SARGENT T J,SIMS C A.Business cycle modeling without pretending to have too much a priori economic theory[R].Federal Reserve Bank of Minneapolis working paper No.55,1977. [9]GIANNONE D,REICHLIN L,SALA L.Monetary policy in real time[R].NBER macroeconomics annual,2004. [10]STOCK J H,WATSON M W.Forecasting using principal components from a large number of predictors[J].Journal of the American statistical association,2002a,97 (460),1167-1179. [11]LUDVIGSON S C,NG S.The empirical risk-return relation:a factor analysis approach[J].Journal of financial economics,2007 (83):171-222. [12]王维国,王蕊.经济不确定性测度——基于FAVAR-SV模型[J].经济问题探索,2018 (12):21-29. [13]张向达,娄峰.中国货币政策的宏观经济效应分析:基于FAVAR模型[J].宏观经济研究,2017 (10):11-19. [14]王少平,朱满洲,胡朔商.中国CPI的宏观成分与宏观冲击[J].经济研究,2012 (12):29-42. [15]DAVIS S J,WACHTER T V.Recessions and the costs of job loss[R].NBER working paper,No.43 (2),2011. [16]TIMMER M P,DIETZENBACHER E,LOS B,et al.An illustrated user guide to the world input-output database:the case of global automotive production[J].Review of international economics,2015 (23):575-605. [17]BREWER M,CROSSLEY T F,JOYCE R.Inference with difference-in-differences revisited[R].IZA discussion paper No.77425,2013. [18]张延群,张沥元.中国全要素生产率增长潜力分析——从历史和改革的视角[J].中国科技论坛,2017 (11):45-50. [19]洪敏,张涛,王广凯.异质机构投资者与企业技术创新——基于不同期限机构投资者的实证检验[J].中国科技论坛,2018 (5):57-70. [20]李平.提升全要素生产率的路径及影响因素——增长核算与前沿面分解视角的梳理分析[J].管理世界,2016 (9):1-11. [21]JURADO K,LUDVIGSON S C,NG S.Measuring uncertainty[J].American economic review,2015,105 (3):1177-1216.