Abstract:Under the background of industrial green transformation,this paper selects the panel data of 26 urban industrial enterprises in the Yangtze River Delta urban agglomeration from 2009 to 2018,calculates the green total factor productivity by SBM model with undesirable output,and analyzes the difference of industrial green total factor productivity,with respect to city's spatial distribution pattern and city's scale types.It is found that the overall green total productivity of industrial enterprises is low,but it is on the rise.At the same time,the imbalance of industrial green development in urban agglomerations intensifies,and the difference of green total factor productivity among cities is firstly decreasing and then rising.Through the extended STIRPAT model,the empirical study shows that the level of economic development significantly promotes the growth of green total factor productivity,the level of technological innovation,the proportion of secondary industry,foreign direct investment,capital deepening and environmental regulation have inhibitory effects on green total factor productivity.Therefore,promoting green technology progress,promoting the upgrading and optimization of industrial structure,improving the quality of FDI and improving the environmental regulation system are important ways to promote the high-quality development of industrial enterprises.
孙冬营, 吴星妍, 顾嘉榕, 许玲燕, 王慧敏. 长三角城市群工业企业绿色全要素生产率测算及其影响因素[J]. 中国科技论坛, 2021(12): 91-100.
Sun Dongying, Wu Xingyan, Gu Jiarong, Xu Lingyan, Wang Huimin. Green Total Factor Productivity Measurement and Influencing Factors of Industrial Enterprises in Yangtze River Delta Urban Agglomeration. , 2021(12): 91-100.
[1]孙晓华,郭旭.工业集聚效应的来源:劳动还是资本[J].中国工业经济,2015, (11):78-93. [2]WATANABE M,TANAKA K.Efficiency analysis of Chinese industry:a directional distance function approach[J].Energy policy,2007,35 (12):6323-6331. [3]MAHLBERG B,LUPTACIK M,SAHOO B.Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries[J].Ecological economics,2011,72:60-69. [4]FENG C,HUANG J,WANG M.Analysis of green total-factor productivity in China's regional metal industry:a meta-frontier approach[J].Resources policy,2018,58:219-229. [5]陈诗一.中国的绿色工业革命:基于环境全要素生产率视角的解释 (1980—2008)[J].经济研究,2010 (11):21-34. [6]郑垂勇,朱晔华,程飞.城镇化提升了绿色全要素生产率吗——基于长江经济带的实证检验[J].现代经济探讨,2018 (5):110-115. [7]冯杰,张世秋.基于DEA方法的我国省际绿色全要素生产率评估——不同模型选择的差异性探析[J].北京大学学报 (自然科学版),2017 (53):151-159. [8]李玲,陶锋.污染密集型产业的绿色全要素生产率及影响因素——基于SBM方向性距离函数的实证分析[J].经济学家,2011 (12):32-39. [9]孙燕铭,孙晓琦.长三角城市群工业绿色全要素生产率的测度及空间分异研究[J].江淮论坛,2018 (6):60-67. [10]CHEN S,GOLLEY J.‘Green’productivity growth in China's industrial economy[J].Energy economics,2014,44:89-98. [11]CUI H,WANG H,ZHAO Q.Which factors stimulate industrial green total factor productivity growth rate in China? An industrial aspect[J].Greenhouse gases:science and technology,2019,9 (3):505-518. [12]陈超凡.中国工业绿色全要素生产率及其影响因素——基于ML生产率指数及动态面板模型的实证研究[J].统计研究,2016,33 (3):53-62. [13]全良,张敏,赵凤.中国工业绿色全要素生产率及其影响因素研究——基于全局SBM方向性距离函数及SYS-GMM模型[J].生态经济,2019,35 (4):39-46. [14]周五七.长三角工业绿色全要素生产率增长及其驱动力研究[J].经济与管理,2019,33 (1):36-42. [15]段文斌,尹向飞.中国全要素生产率研究评述[J].南开经济研究,2009 (2):130-140. [16]TONE K.A slacks-based measure of efficiency in data envelopment analysis[J].European journal of operational research,2001,130 (3):498-509. [17]WEN L,LI Z.Driving forces of national and regional CO2 emissions in China combined IPAT-E and PLS-SEM model[J].Science of the total environment,2019,690:237-247. [18]YORK R,ROSA E A,DIETZ T.STIRPAT,IPAT and IMPACT:analytic tools for unpacking the driving forces of environmental impacts[J].Ecological economics,2003,46 (3):351-365. [19]岳鸿飞,徐颖,周静.中国工业绿色全要素生产率及技术创新贡献测评[J].上海经济研究,2018 (4):52-61. [20]XU F,HUANG Q,YUE H,et al.Reexamining the relationship between urbanization and pollutant emissions in China based on the STIRPAT model[J].Journal of environmental management,2020,273:111134. [21]程都,李钢.环境规制强度测算的现状及趋势[J].经济与管理研究,2017,38 (8):75-85. [22]孙金岭,朱沛宇.基于SBM-Malmquist-Tobit的 “一带一路”重点省份绿色经济效率评价及影响因素分析[J].科技管理研究,2019,39 (12):230-237.