Research on the Spatial Pattern Evolution of Unicorn Enterprise and Location Influencing Factors ——Taking Beijing,Shanghai,Shenzhen and Hangzhou as Cases
Ma Teng1,2, Li Yijie3, Yu Jie4
1. Alibaba Business School,Hangzhou Normal University,Hangzhou 311121,China; 2. Institute for Global Innovation and Development,East China Normal University,Shanghai 200062,China; 3. School of Economics,Hangzhou Normal University, Hangzhou 311121,China; 4. School of Politics and Public Administration,Soochow University,Suzhou 215123,China
Abstract:As a typical representative of innovative enterprises,unicorn enterprises(UE)have become an important index to measure the urban innovation environment.Their spatial distribution in the city reflects the layout and development trend of innovation subjects,resources and policies in the city where they are located.This paper selects four representative cities which are Beijing,Shanghai,Shenzhen and Hangzhou as cases to carry out the further research.From the perspective of geography,the spatial distribution characteristics of UE on the urban scale are explored by using the research method integrating qualitative,quantitative and positioning,and a location model is constructed to analyze the location factors affecting the distribution of UE in four cities.The main conclusions are as follows.①UE have the attribute of high-tech innovation,which is mainly reflected in the high proportion of high-tech enterprises and“living by scientific and technological innovation resources”.②From 2016 to 2019,UE in the four selected cities all showed a significant agglomeration trend and no new agglomeration areas were created.According to the measurement of fragmentation index and uniformity index,UE in Beijing and Shenzhen are more concentrated,while those in Shanghai and Hangzhou are slightly weaker.③UE in Beijing gather in Haidian Park and Chaoyang Park in Zhongguancun,Shanghai in various parks of Zhangjiang High-tech Zone,Shenzhen in Nanshan Park of High-tech Zone,and Hangzhou near Zhejiang University and Alibaba.④According to different dominant location factors,the spatial distribution patterns of UE in the four cities can be summarized as Comprehensive oriented,High-tech Zone(multi-core)oriented,High-tech Zone(single-core)oriented and Elite school + Platform enterprises oriented respectively.The different spatial distribution patterns show the differences and uniqueness of the four cities in the allocation of scientific and technological innovation resources.The above findings have reference value for the rational layout of scientific and technological innovation resources in cities and the cultivation of more UE.
马腾, 李一杰, 余杰. 独角兽企业空间格局演化及其区位影响因素研究——以北京、上海、深圳、杭州为例[J]. 中国科技论坛, 2022(8): 128-138.
Ma Teng, Li Yijie, Yu Jie. Research on the Spatial Pattern Evolution of Unicorn Enterprise and Location Influencing Factors ——Taking Beijing,Shanghai,Shenzhen and Hangzhou as Cases. , 2022(8): 128-138.
[1]刘程.“独角兽”企业来了[N].光明日报,2016-08-19(11). [2]李金华.中国冠军企业、“独角兽”企业的发展现实与培育路径[J].深圳大学学报(人文社会科学版),2019,36(1):68-76. [3]叶李希.独角兽企业的特征分析[J].皖西学院学报,2019,35(1):55-58. [4]张学艳,周小虎,王侨.新经济独角兽企业的培育路径探析——以江苏省为例[J].科技管理研究,2020,40(4):8-12. [5]陈强,肖雨桐,刘笑.京沪独角兽企业成长环境比较研究——城市创新创业生态体系的视角[J].同济大学学报(社会科学版),2018,29(5):106-114. [6]ADLER P,FLORIDA R,KING K,et al.The city and high-tech startups:the spatial organization of Schumpeterian entrepreneurship[J].Cities,2019,87:121-130. [7]楚天骄,宋韬.中国独角兽企业的空间分布及其影响因素研究[J].世界地理研究,2017,26(6):101-109. [8]刘娟.全球独角兽发展态势及杭州经验[J].杭州科技,2018(2):44-49. [9]ZHAI J,JON C.The rise of the chinese unicorn:an exploratory study of unicorn companies in China[J].Journal of emerging markets finance and trade,2019,55(15):3371-3385. [10]钱燕.苏州独角兽企业培育基础与对策研究[J].苏州科技大学学报(社会科学版),2018,35(2):25-30. [11]胡峰,李晶,黄斌.中国独角兽企业分析及其对江苏的启示[J].科技与经济,2016,29(5):101-105. [12]余维臻,陈立峰,刘锋.后发情境下创业企业如何成为“独角兽”——颠覆性创新视角的探索性案例研究[J].科学学研究,2021,39(7):1267-1276. [13]郑健壮,吴文雯.独角兽企业成长关键因素的实证研究[J].科技管理研究,2020,40(21):225-232. [14]刘卓群.我国独角兽企业的风险管理问题研究[J].知识经济,2017(13):96-97. [15]GIUSEPPE V,MARGHERITA C,SALVATI L.Latent sprawl patterns and the spatial distribution of businesses in a southern European city[J].Cities,2017,62:50-61. [16]ALIN L,MING L,CAN L.On spatial distribution and determinants of urban photovoltaic utilization in China[J].Energy procedia,2017,134:470-479. [17]ANNA I S,MONIKA P.Factors considered in location of construction enterprises in the małopolskaregion[J].Procedia-social and behavioral sciences,2014,110:381-389. [18]罗蕾,田玲玲,罗静.武汉市中心城区创意产业企业空间分布特征[J].经济地理,2015,35(2):114-119. [19]王成金,张梦天.中国物流企业的布局特征与形成机制[J].地理科学进展,2014,33(1):134-144. [20]魏冶,修春亮,庞瑞秋,等.沈阳市百强企业空间集聚与空间组织关联[J].经济地理,2014,34(8):89-95,110. [21]黄中伟.产业集群的网络创新机制和绩效[J].经济地理,2007(1):47-51. [22]SHI X.Selection of bandwidth type and adjustment side in kernel density estimation over in homogeneous backgrounds[J].International journal of geographical information science,2010,24(5):643-660. [23]蒋天颖,史亚男.宁波市物流企业空间格局演化及影响因素[J].经济地理,2015,35(10):130-138. [24]ZHAO XG,LU F.Spatial distribution characteristics and convergence of China's regional energy intensity:an industrial transfer perspective[J].Journal of cleaner production,2019,233:903-917. [25]GETIS A,ORD J K.The analysis of spatial association by the use of distancestatistics[J].Geographical analysis,1992,24:189-206. [26]方忠权.广州会展企业空间集聚特征与影响因素[J].地理学报,2013,68(4):464-476. [27]周晓艳,侯美玲,李霄雯.独角兽企业内部联系视角下中国城市创新网络空间结构研究[J].地理科学进展,2020,39(10):1667-1676. [28]杨文龙,杜德斌,刘承良,等.中国地缘经济联系的时空演化特征及其内部机制[J].地理学报,2016,71(6):956-969. [29]罗震东,张京祥.大都市区域空间集聚-碎化的测度及实证研究——以江苏沿江地区为例[J].城市规划,2002(4):61-63. [30]夏显力,赵凯,马健梅.陕西关中城镇集聚-碎化指数测度及其分析[J].西北农林科技大学学报(社会科学版),2008(1):33-36. [31]黄思.深圳市发展“独角兽”企业策略分析[J].特区经济,2019(4):9-12. [32]段德忠,杜德斌,刘承良.上海和北京城市创新空间结构的时空演化模式[J].地理学报,2015,70(12):1911-1925. [33]朱华友.空间集聚与产业区位的形成:理论研究与应用分析[D].长春:东北师范大学,2004. [34]齐嘉.促进我国民营企业高质量发展的政策思路——基于瞪羚企业扶持政策的效应分析[J].学习与实践,2019(2):13-19. [35]姚如青.城市基本公共服务政策的统筹:基于杭州中心城区的探讨[J].城市观察,2015(4):142-150. [36]吕洁华.高新技术企业核心竞争力研究[D].哈尔滨:东北林业大学,2005. [37]李小建等.经济地理学(第二版)[M].北京:高等教育出版社,2006. [38]王缉慈,宋向辉,李光宇.北京中关村高新技术企业的集聚与扩散[J].地理学报,1996(6):481-488. [39]胡蓓,周均旭,翁清雄.高科技产业集群特性对人才吸引力的影响——基于武汉光谷、北京中关村等产业集群的实证[J].研究与发展管理,2009,21(1):51-57,78. [40]刘辉,申玉铭,王伟,等.北京金融服务业集群的网络特征及影响因素[J].经济地理,2013,33(1):131-137. [41]胡海鹏,吕拉昌.中关村产学研合作创新网络的时空演化[J].中国科技论坛,2018(12):52-59. [42]李庆.科技创新政策的转移、转移网络和竞争力研究[D].合肥:中国科学技术大学,2017. [43]钟本章.市场产业部门:深圳高新区走出的另类国家创新道路[J].经济体制改革,2020(4):115-121. [44]深圳市人民政府.《深圳市人民政府关于印发深圳国家高新区扩区方案的通知》[Z].2019-04-23. [45]李佳洺,张文忠,李业锦,等.基于微观企业数据的产业空间集聚特征分析——以杭州市区为例[J].地理研究,2016,35(1):95-107. [46]LUTSENKO E S.Path dependence in spatial distribution of economic activity:bad news for empiric research of agglomeration effects[J].Journal of the new economic association,2012,14(2):10-26. [47]孟韬,徐广林.专利申请、创业融资与独角兽企业估值及成长性[J].科学学研究,2020,38(8):1444-1450,1472. [48]ZIMMERMAN J L.Private equity,the rise of unicorns,and the reincarnation of control-based accounting[J].Journal of applied corporate finance,2016,28(3):56-67. [49]SAMUEL K,JOSH L.Assessing the contribution of venture capital to innovation[J].Rand journal of economics,2001,31(4):674-692. [50]GORNALL W,STREBULAEV I A.Squaring venture capital valuations with reality[J].Journal of financial economics,2020,135(1):120-143. [51]林汉川,管鸿禧.中国不同行业中小企业竞争力评价比较研究[J].中国社会科学,2005(3):48-58. [52]刘景东,党兴华,谢永平.不同知识位势下知识获取方式与技术创新的关系研究——基于行业差异性的实证分析[J].科学学与科学技术管理,2015,36(1):44-52.