Abstract:In the current escalating trade tensions between China and the United States and the frequent emergence of“Neck-jamming”technologies,studying the diffusion and dynamic evolution of lithography technology is crucial to overcome the“Neck-jamming”technology issue and breakthrough the whole situation.This paper uses patent citation to construct a citation network and describe the lithography technology diffusion path using three main path analysis methods named as local forward search,local backward search,and key-route path.A comparative analysis identifies and analyzes the stages of the dynamic evolution of lithography technology.The results show that:the United States (US),Japan (JP),and German (GE) have first-mover advantages,and the diffusion of lithography technology is dominated by large companies such as TSMC and ASML.At the beginning of the technology development,the focus was on manufacturing devices and improving processes.While in the later phase,the focus was on developing lithographic materials.From 2015 onward,technology diffusion mainly focuses on EUV photoresist materials.Compared to the global trend of lithography technology diffusion,China entered the field of lithography late,and its technology diffusion capability is not strong and has not yet appeared on the leading technology path.This study reveals lithography technology diffusion's rules and characteristics from two perspectives:the technology diffusion path and the technology dynamic evolution.It enriches the theoretical research on“neck-jamming”technology.Also,it provides decision support and an empirical basis for selecting technological path.
杨武, 陈培, Gad David. 光刻机产业技术扩散与技术动态演化——对“卡脖子”技术的启示[J]. 中国科技论坛, 2022(9): 73-84.
Yang Wu, Chen Pei, Gad David. The Study of Technology Diffusion and Technology Dynamic Evolution in Lithography Industry——Implications for Neck-Jamming Technologies. , 2022(9): 73-84.
[1]肖广岭.以颠覆性技术和“卡脖子”技术驱动创新发展[J].人民论坛·学术前沿,2019(13):55-61.
[2]陈劲,阳镇,朱子钦.“十四五”时期“卡脖子”技术的破解:识别框架、战略转向与突破路径[J].改革,2020(12):5-15.
[3]林波,杨秀财,侯剑华.知识流动视角下中美专利技术扩散的比较分析——以碳纳米管技术为例[J].情报杂志,2019,38(11):43-49.
[4]曹兴,柴张琦.技术扩散的过程与模型:一个文献综述[J].中南大学学报(社会科学版),2013,19(4):14-22.
[5]KIM D,LEE H,KWAK J.Standards as a driving force that influences emerging technological trajectories in the converging world of the Internet and things:an investigation of the M2M/IoT patent network[J].Research policy,2017,46(7):1234-1254.
[6]张运生,陈瑟,林宇璐.高技术产业专利池技术扩散效应研究[J].情报杂志,2020,39(1):194-200.
[7]YU D,SHENG L.Knowledge diffusion paths of blockchain domain:the main path analysis[J].Scientometrics,2020,125(1):471-497.
[8]高伊林,闵超.中美对“一带一路”沿线技术扩散结构比较研究[J].数据分析与知识发现,2021,5(6):80-92.
[9]周成,魏红芹.基于专利引用网络的我国新能源汽车省际间知识流动研究[J].情报杂志,2018,37(7):60-65.
[10]EPICOCO M.Knowledge patterns and sources of leadership:mapping the semiconductor miniaturization trajectory[J].Research policy,2013,42(1):180-195.
[11]周雷,杨萍,凡庆涛,等.结合商业数据库的行业关键垄断技术识别研究——以半导体行业为例[J].情报杂志,2019,38(6):30-37.
[12]王海龙,和法清,丁堃.基于社会网络分析的专利基础技术识别——以半导体产业为例[J].情报杂志,2017,36(4):78-84.
[13]吴晓波,张馨月,沈华杰.商业模式创新视角下我国半导体产业“突围”之路[J].管理世界,2021,37(3):123-136.
[14]姜迪,徐寅,陈长益,等.基于专利分析的芯片“卡脖子”问题研究[J].中国科技资源导刊,2021,53(4):14-21.
[15]王晓东.“光刻机”的概念,技术及其在专利文献中的分布[J].中国科技术语,2014,16(1):75.
[16]SU W H,CHEN K Y,LU L,et al.Identification of technology diffusion by citation and main paths analysis:the possibility of measuring open innovation[J].Journal of open innovation technology market and complexity,2021,7(1):104.
[17]HIRSCH J E.An index to quantify an individual's scientific research output[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(46):16569-16572.
[18]GUAN J,GAO X.Exploring the h-index at patent level[J].JASIST,2009,60(1):35-40.
[19]EGGHE L.Theory and practice of the g-Index[J].Scientometrics,2006,69(1):131-152.
[20]李云飞,宋歌.指数创新的扩散与再创新研究[J].情报杂志,2019,38(9):158-165.
[21]WANG L,JIANG S,ZHANG S.Mapping technological trajectories and exploring knowledge sources:a case study of 3D printing technologies[J].Technological forecasting & social change,2020,161:120251.
[22]HUMMON N P,DEREIAN P.Connectivity in a citation network:the development of DNA theory[J].Social networks,1989,11(1):39-63.
[23]BATAGELJ V,MRVAR A.Pajek-program for large network analysis[J].Connect,1998,21(2):47-57.
[24]LU L Y Y,LIU J S.A novel approach to identify the major research themes and development trajectory:the case of patenting research[J].Technological forecasting & social change,2016,103(C):71-82.
[25]许琦,顾新建,陈芨熙.基于专利引证网络的技术进化路线分析——以数据挖掘领域为例[J].科研管理,2013,34(2):27-35.
[26]戚筠,唐恒,石俊国.基于小世界网络特性的核心技术识别研究——以石墨烯为例[J].情报杂志,2020,39(2):50-55.
[27]何立文,罗乐,孟钢,等.新型光刻技术研究进展[J].激光技术,2019,43(1):30-37.
[28]LIU J,LU L.An integrated approach for main path analysis:development of the hirsch index as an example[J].Journal of the American society for information science and technology,2012,63(3):528-542.
[29]WURM S.Transition to EUV lithography[C].Proceedings of technical program of 2012 VLSI technology,system and application,IEEE,2012.
[30]顾柏春.集成电路中的物理问题讲座——第九讲 光电子与俄歇电子在X射线光刻中的影响[J].物理,1985(11):695-699.
[31]HU A,JAFFE A B.Patent citations and international knowledge flow[J].International journal of industrial organization,2003,21(6):849-880.
[32]王海龙,和法清,丁堃.基于社会网络分析的专利基础技术识别——以半导体产业为例[J].情报杂志,2017,36(4):78-84.