Research on the Identification Method of Advantageous Technology R&D Direction for Patent Based on Technology Evolution Knowledge Graph
Cai Dapeng1, Li Mengyang2, Zhai Dongsheng3
1. Beijing Open University,Beijing 100081,China; 2. Kunlun Digital Technology Co.,Ltd.,Beijing 102206,China; 3. Beijing University of Technology,Beijing 100124,China
Abstract:High-quality technology R&D work of patent is important to enhance the competitiveness of enterprises and maintain national industrial technology security.However,the current complex and changing technology evolution environment makes it difficult for enterprises to identify the technology direction with more future development prospects and to carry out effective patent R&D work.The existing methods of technology R&D direction selection for patenting mainly take the pan-technology domain as the research object,which is difficult to provide a clear direction for technology R&D of patent with finer granularity.At the same time,the endowment law of technology evolution is not sufficiently considered,so there is still room for improvement in the judgment of technology and market development trend.Therefore,this paper started from constructing a patent technology evolution knowledge graph,introducing technology evolution information,designed an analysis framework based on the evolution structure presented in the knowledge graph,and proposed evaluation indexes for identifying advantageous technology R&D direction for patenting in combination with technology life cycle theory.The proposed method further focuses the analysis perspective on technology R&D work of patent based on making full use of the law of technology evolution,and provides more precise and scientific direction guidance for technology R&D work of patent.At the end this paper conducted an empirical study in the field of technology of non-perfluorinated proton exchange membranes in China,which verifies the effectiveness of the proposed method and provides guidance suggestions for patent R&D.
蔡大鹏, 李梦洋, 翟东升. 基于技术演化图谱的优势专利技术研发方向识别方法研究[J]. 中国科技论坛, 2023(3): 149-159.
Cai Dapeng, Li Mengyang, Zhai Dongsheng. Research on the Identification Method of Advantageous Technology R&D Direction for Patent Based on Technology Evolution Knowledge Graph. , 2023(3): 149-159.
[1]张硕,汪雪锋,乔亚丽,等.技术预测研究现状、趋势及未来思考:数据分析视角.图书情报工作:1-15.DOI:10.13266/j.issn.0252-3116.2022.10.001. [2]董鑫,陈爽英.情景视角下技术外部商业化产品导向收益研究:相对专利位势的中介作用.科学学研究,2014,32(1):114-121. [3]王珊珊.企业专利优势的分析与表征:基于13家智能手机公司的研究.中国科技论坛,2020(12):154-163. [4]ARTS S,CASSIMAN B,GOMEZ J C.Text matching to measure patent similarity.Strategic management journal,2018,39(1):62-84. [5]CHO Y,KIRKEWOOG S,DAIM T U.Managing strategic intellectual property assets in the fuzzy front end of new product development process.R&D management,2018,48(3):354-374. [6]张杰,孙超,翟东升,等.基于诉讼专利的专利质量评价方法研究.科研管理,2018,39(5):138-146. [7]FISCHER T,LEIDINGER J.Testing patent value indicators on directly observed patent value:an empirical analysis of ocean tomo patent auctions.Research policy,2014,43(3):519-529. [8]曹明,陈荣,孙济庆,等.基于专利分析的技术竞争力比较研究.科学学研究,2016,34(3):380-385,470. [9]LIU H,CHEN Z,TANG J,et al.Mapping the technology evolution path:a novel model for dynamic topic detection and tracking.Scientometrics,2020(2):1-48. [10]杨恒,王曰芬,张露.基于核心专利技术主题识别与演化分析的技术预测.情报杂志,2022,41(7):49-56. [11]YOON B,MAGEE C L.Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction.Technological forecasting and social change,2018,132:105-117. [12]柴庆凤,翟东升,蔡力伟,等.基于专利网络链接模型的技术链接机会预测方法研究.情报理论与实践,2020,43(12):111-119. [13]慎金花,闫倩倩,孙乔宣,等.基于专利数据挖掘的技术融合识别与技术机会预测研究:以电动汽车产业为例.图书馆杂志,2019,38(10):95-106. [14]KIM J,LEE S.Forecasting and identifying multitechnology convergence based on patent data:the case of IT and BT industries in 2020.Scientometrics,2017,111(1):47-65. [15]JORGE R A.Scientific output of the emerging cuban biopharmaceutical industry:a scientometric approach.Scientometrics,2016,108(3):1621-1636. [16]武川,王宏起,李玥,等.战略性新兴产业前沿技术领域预测与合作潜力:基于主题相似网络关系的分析视角.系统工程,2021,39(4):151-158. [17]BRAD S,BRAD E.Enhancing SWOT analysis with TRIZ-based tools to integrate systematic innovation in early task design.Procedia engineering,2015,131:616-625. [18]张欣.基于专利分析和TRIZ技术进化理论的产品预测研究.广州:广东工业大学,2018. [19]郭玥.基于专利分析的工业机器人技术演变与技术预测研究.上海:华东师范大学,2021. [20]张洋,林宇航,侯剑华.基于融合数据和生命周期的技术预测方法:以病毒核酸检测技术为例.情报学报,2021,40(5):462-470. [21]王京安,校姜文,牛建,等.基于专利分析的技术发展趋势预测研究:以液晶材料技术为例.科技管理研究,2019,39(8):141-149. [22]高楠,彭鼎原,傅俊英,等.基于专利IPC分类与文本信息的前沿技术演进分析:以人工智能领域为例.情报理论与实践,2020,43(4):123-129. [23]冯立杰,周炜,刘鹏,等.基于引文网络和语义分析的技术演化路径识别及拓展研究.情报理论与实践:1-13.http://kns.cnki.net/kcms/detail/11.1762.G3.20220811.1521.004.html. [24]余超.基于进化路线与卷积神经网络的智能化技术预测方法研究.济南:济南大学,2021. [25]桂美增,许学国.基于深度学习的技术机会预测研究:以新能源汽车为例.图书情报工作,2021,65(19):130-141. [26]MANN D L.Better technology forecasting using systematic innovation methods.Technological forecasting & social change,2003,70(8):779-795. [27]LI H,YUAN J F,TAN R,et al.Designaround bundle patent portfolio based on technological evolution.Chinese journal of mechanical engineering,2019,32(1):1-16. [28]赖朝安,徐翠璐.一种基于专利分析的技术成熟度评估算法.科研管理,2017,38(S1):237-243. [29]傅瑶,孙玉涛,刘凤朝.美国主要技术领域发展轨迹及生命周期研究:基于S曲线的分析.科学学研究,2013,31(2):209-216. [30]方曦,吴冰倩,熊焰.基于专利指标法和S曲线的门禁系统安全技术生命周期研究.科技管理研究,2019,39(15):130-136. [31]ALTSHULLER G S,SHAPIRO R B.Psychology of inventive creativity.Issues of psychology,1956,6:37-49. [32]翟东升,阚慧敏,李梦洋,等.产业链视角下基于图嵌入的专利布局意图挖掘方法研究.情报学报,2022,41(5):437-450.