Research on the Identification and Prediction Methods of Frontier Technologies ——Based on the Patent Topic Similarity Network and Technology Evolution Law
Wu Chuan1, Wang Hongqi1, Wang Shanshan2
1. School of Economics and Management, Harbin University of Science and Technology, Harbin 150080, China; 2. School of Business Administration, Zhejiang University of Finance and Economics, Hangzhou 310018, China
Abstract:Frontier technologies refer to the guiding and advanced core technologies in high-tech fields.The accurate identification and prediction of frontier technologies is crucial to the effective allocation of technical resources.From the perspective of patent topic similarity, this study develops a frontier technology identification method covering outlier technologies, and introduces the technology evolution law (nine screen method)of the TRIZ theory to predict the future frontier technologies, including determining the current system, identifying technological evolution points and extending prediction.By collecting the data of graphene patents from 2001 to 2021, this study empirically identifies and predicts the frontier technologies in the graphene field.The findings show that the frontier technology identification method developed in this study can make up for the lack of completeness of traditional identification methods, and accurately identify the outliers and non-hot frontier technologies.The extending prediction results of frontier technologies are of great reference value for the technology layout of future industries.
武川, 王宏起, 王珊珊. 前沿技术识别与预测方法研究——基于专利主题相似网络与技术进化法则[J]. 中国科技论坛, 2023(4): 34-42.
Wu Chuan, Wang Hongqi, Wang Shanshan. Research on the Identification and Prediction Methods of Frontier Technologies ——Based on the Patent Topic Similarity Network and Technology Evolution Law. , 2023(4): 34-42.
[1]迟凤玲.中国企业开始增加基础研究投入[J].中国科技论坛,2019 (6):卷首语. [2]孔德婧,董放,陈子婧,等.离群专利视角下的新兴技术预测:基于BERT模型和深度神经网络[J].图书情报工作,2021,65 (17):131-141. [3]刘琦岩,曾文,车尧.面向重点领域科技前沿识别的情报体系构建研究[J].情报学报,2020,39 (4):345-356. [4]刘小平,冷伏海,李泽霞.国际科技前沿分析的方法和途径[J].图书情报工作,2012,56 (12):60-65. [5]宋凯,朱彦君.专利前沿技术主题识别及趋势预测方法:以人工智能领域为例[J].情报杂志,2021,40 (1):33-38. [6]LEE C,KWON O,KIM M,et al.Early identification of emerging technologies:a machine learning approach using multiple patent indicators[J].Technological forecasting & social change,2018,127:291-303. [7]李仕明,李平,肖磊.新兴技术变革及其战略资源观[J].管理学报,2005,2 (3):304-306,361. [8]王智琦,陈悦,姜照华,等.前沿技术与核心技术识别的投入产出分析方法:以混合动力汽车为例[J].科学学研究,2015,33 (11):1612-1620. [9]谭劲松,宋娟,王可欣,等.创新生态系统视角下核心企业突破关键核心技术 “卡脖子”:以中国高速列车牵引系统为例[J/OL].南开管理评论 (2022-03-16)[2022-04-17].http://kns.cnki.net/kcms/detail/12.1288.f.20220311.1333.002.html. [10]林亨,周源,刘宇飞.技术热点、前沿识别支持的2035技术清单调整方法:以机器人技术为例[J].中国工程科学,2017,19 (1):124-132. [11]李贺,袁翠敏,解梦凡.专利文献中的睡美人现象分析与研究[J].图书情报工作,2019,63 (6):64-74. [12]刘志辉,张均胜,林毅,等.基于隐性知识的潜在颠覆性技术评估方法研究[J].情报学报,2021,40 (12):1271-1278. [13]AHARONSON B S,SCHILLING M A.Mapping the technological landscape:measuring technology distance,technological footprints,and technology evolution[J].Research policy,2016,45 (1):81-96. [14]TSENG F,CHENG A,PENG Y.Assessing market penetration combining scenario analysis,Delphi,and the technological substitution model:the case of the OLED TV market[J].Technological forecasting & social change,2009,76 (7):897-909. [15]袁思达.技术预见德尔菲调查中共性技术课题识别研究[J].科学学与科学技术管理,2009,30 (10):21-26. [16]LEE B,SOHN S.Exploring the effect of dual use on the value of military technology patents based on the renewal decision[J].Scientometrics,2017,112 (3):1203-1227. [17]SASAKI H,SAKATA I.Identifying potential technological spin-offs using hierarchical information in international patent classification[J].Technovation,2021,100:102192. [18]汪志兵,韩文民,孙竹梅,等.基于网络结构特征的技术创新合作网络链路可预测性研究[J].情报理论与实践,2022,45 (3):165-172. [19]刘玉梅,温馨,孟翔飞.基于技术轨道跃迁的突破性技术预测方法及应用研究[J].情报杂志,2021,40 (11):39-45,15. [20]李冰,丁堃,孙晓玲.企业潜在技术合作伙伴及竞争者预测研究:以燃料电池技术为例[J].情报学报,2021,40 (10):1043-1051. [21]伊惠芳,吴红,马永新,等.基于LDA和战略坐标的专利技术主题分析:以石墨烯领域为例[J].情报杂志,2018,37 (5):97-102. [22]何喜军,马珊,武玉英.基于本体和SAO结构的线上技术供需信息语义匹配研究[J].情报科学,2018,36 (11):95-100. [23]黄璐,朱一鹤,张嶷.基于加权网络链路预测的新兴技术主题识别研究[J].情报学报,2019,38 (4):335-341. [24]张洋,林宇航,侯剑华.基于融合数据和生命周期的技术预测方法:以病毒核酸检测技术为例[J].情报学报,2021,40 (5):462-470. [25]ZHOU Y,DONG F,LIU Y,et al.Forecasting emerging technologies using data augmentation and deep learning[J].Scientometrics,2020,123 (1):1-29. [26]孔德婧,董放,陈子婧,等.离群专利视角下的新兴技术预测:基于BERT模型和深度神经网络[J].图书情报工作,2021,65 (17):131-141. [27]高玉峰,孙棕檀.国防重大前沿技术遴选预测方法构建与验证[J].科学决策,2021,28 (6):122-136. [28]张硕,汪雪锋,乔亚丽,等.技术预测研究现状、趋势及未来思考:数据分析视角[J].图书情报工作,2022,66 (10):4-18. [29]BIANCHI M,CAMPODALL S,FRATTINI F,et al.Enabling open innovation in small and medium-sized enterprises:how to find alternative applications for your technologies[J].R&D management,2010,40 (4):414-431. [30]谢志明,张媛,贺正楚,等.新能源汽车产业专利趋势分析[J].中国软科学,2015,30 (9):127-141. [31]丁俊武,韩玉启,郑称德.创新问题解决理论——TRIZ研究综述[J].科学学与科学技术管理,2004,25 (11):53-60. [32]OUYANG K,WENG C.A new comprehensive patent analysis approach for new product design in mechanical engineering[J].Technological forecasting & social change,2011,78 (7):1183-1199. [33]罗建强,赵艳萍,彭永涛.基于TRIZ的制造企业服务衍生研究[J].管理评论,2016,28 (5):35-46. [34]VICENTE-GOMILA J M,ARTACHO-RAMÍREZ M A,TING M,et al.Combining tech mining and semantic TRIZ for technology assessment:dye-sensitized solar cell as a case[J].Technological forecasting & social change,2021,169:120826. [35]李弘,肖玉,颜惠庚.技术系统进化法则在九屏幕法中的应用[J].统计与管理,2013,28 (2):145-146. [36]武川,王宏起,李玥,等.战略性新兴产业前沿技术领域预测与合作潜力:基于主题相似网络关系的分析视角[J].系统工程,2021,39 (4):151-158. [37]孙成,崔维军,陈光.大学、公共研究机构及企业对产学研合作问题的认知差异:基于日本深度访谈的文本分析[J].中国科技论坛,2021 (2):179-188. [38]YANG X,YANG K,CUI T,et al.A study of text vectorization method combining topic model and transfer learning[J].Processes,2022,10 (2):350. [39]NURFADILA P,WIBAWA A,ZAENI I,et al.Journal classification using cosine similarity method on title and abstract with frequency-based stopword removal[J].International journal of artificial intelligence research,2019,3 (2):28-37. [40]丁志坤,王杰富,何漫波,等.基于TRIZ的建筑模板专利创新规律研究[J].工程管理学报,2011,25 (2):143-146. [41]张亚斌,王洵迪.基于TRIZ理论的物联网关键技术专利发展态势及预测分析[J].系统工程,2015,33 (3):130-136. [42]张佳欣.多层魔角石墨烯形成稳健超导性[N].科技日报,2022-07-13 (4).