Abstract:Under a competitive environment,technical cooperation of the global industrial chain is limited.The analysis and identification of technical blockage points plays an important role in preventing major technological risks,breaking through technological barriers,and constructing independent and controllable industrial chains.From the perspective of patents,combined with the US export control list,using text analysis,comparative analysis,and LDA topic modeling,the research compares the technological competitive state of the industrial chain,and builds a framework that integrates different data sources for related analysis.The industry chain positioning is carried out on core technology blocking points that are in urgent need of breakthrough but subject to technical limitations.The intrinsic relationship between core patent competition and export control policies is deeply analyzed. Empirical research in the field of integrated circuit has found that there are core technology blockages in China in the fields of digital computing equipment,printing equipment and lithography technology.The corresponding industrial chains are manufacturing equipment and materials.There is a problem of core patents being blocked in advance.Innovation in materials and technical routes can be used as a way to break through technological blockades and achieve independent controllability.The research provides an effective analysis framework for the discovery of industrial core technology blockages under the background of international competition.
张桐赫, 何海燕, 孙磊华, 张亚东. 产业链核心技术堵点识别与分析研究——以芯片产业为例[J]. 中国科技论坛, 2024(1): 38-49.
Zhang Tonghe, He Haiyan, Sun Leihua, Zhang Yadong. Identification and Analysis of Core Technology Blockage Points in the Industrial Chain ——Taking the IC Industry as an Example. , 2024(1): 38-49.
[1]曹倩雯,琚春华,胡志荣.核心技术发现与国内外企业技术差距识别方法研究——以产品视角[J].情报理论与实践,2023,46(1):141-149. [2]侯剑华,朱晓清.基于专利的技术预测评价指标体系及其实证研究[J].图书情报工作,2014,58(18):77-82,116. [3]黄斌,黄鲁成,吴菲菲,等.度量专利表征技术的差异[J].情报杂志,2015,34(10):34-37. [4]ERNST H.Patent information for strategic technology management[J].World patent information,2003,25(3):233-242. [5]LIU C Y,YANG J C.Decoding patent information using patent maps[J].Data science journal,2008(7):14-22. [6]KIM J,LEE C Y,CHO Y.Technological diversification,core-technology competence,and firm growth[J].Research policy,2016,45(1):113-124. [7]ZHANG Y,QIAN Y,HUANG Y,et al.An entropy-based indicator system for measuring the potential of patents in technological innovation:rejecting moderation[J].Scientometrics,2017,111(3):1925-1946. [8]杨大飞,杨武,田雪姣,等.基于专利数据的核心技术识别模型构建及实证研究[J].情报杂志,2021,40(2):47-54. [9]郑思佳,汪雪锋,刘玉琴,等.关键核心技术竞争态势评估研究[J].科研管理,2021,42(10):1-10. [10]罗天雨.核心专利判别方法及其在风力发电产业中的应用[J].图书情报工作,2012,56(24):96-101. [11]PARK H,YOON J.Assessing coreness and intermediarity of technology sectors using patent co-classification analysis:the case of Korean national R&D[J].Scientometrics,2014,98(2):853-890. [12]李昌,周锦锦,韩盟.基于核心集筛选与聚类的潜在专利技术组合识别方法研究[J].情报理论与实践,2021,44(2):178-184. [13]CHOI C,KIM S,PARK Y.A patent-based cross impact analysis for quantitative estimation of technological impact:the case of information and communication technology[J].Technological forecasting & social change,2007,74(8):1296-1314. [14]黄鲁成,刘春文,吴菲菲,等.基于NPCIA的核心技术识别模型及应用研究[J].科学学研究,2020,38(11):1998-2007. [15]KIM C,LEE H,SEOL H,et al.Identifying core technologies based on technological cross-impacts:an association rule mining(ARM)and analytic network process(ANP)approach[J].Expert systems with applications,2011,38(10):12559-12564. [16]任海英,李真.基于输入输出型SAO网络的核心技术链识别方法研究——以量子计算领域为例[J].图书情报工作,2021,65(19):117-129. [17]黄鲁成,王静静,李欣,等.基于论文和专利的钙钛矿太阳能电池的技术机会分析[J].情报学报,2016,35(7):686-695. [18]ZHOU X,GUO Y,LI F,et al.Identifying and assessing innovation pathways for emerging technologies:a hybrid approach based on text mining and altmetrics[J].IEEE transactions on engineering management,2020(99):1-12. [19]张秀妮,辛一,任蔷.技术壁垒环境下产业核心技术预见方法研究——以航空航天产业为例[J].中国科技论坛,2020(8):15-23. [20]许学国,桂美增.基于机器学习的新能源汽车核心技术识别及布局研究[J].科技管理研究,2021,41(9):96-106. [21]任佳妮,张薇,杨阳,等.“人工智能+医疗”新兴技术识别研究——以医疗机器人为例[J].情报杂志,2021,40(12):45-50. [22]周云泽,闵超.基于LDA模型与共享语义空间的新兴技术识别——以自动驾驶汽车为例[J].数据分析与知识发现,2022,6(Z1):55-66. [23]席笑文,郭颖,宋欣娜,等.基于word2vec与LDA主题模型的技术相似性可视化研究[J].情报学报,2021,40(9):974-983. [24]王秀红,高敏.基于BERT-LDA的关键技术识别方法及其实证研究——以农业机器人为例[J].图书情报工作,2021,65(22):114-125. [25]裘惠麟,邵波.多源数据环境下科研热点识别方法研究[J].图书情报工作,2020,64(5):78-88. [26]刘星,单晓光,姜南.基于专利信息的中美区块链技术竞争态势分析[J].科技进步与对策,2020,37(18):1-9. [27]李文娟,刘桂锋,卢章平.基于专利分析的我国大数据产业技术竞争态势研究[J].情报杂志,2015,34(7):65-70. [28]张子岩,张俊艳.基于高质量专利的储能关键技术国际竞争态势[J].储能科学与技术,2022,11(1):321-334. [29]杨曦,余翔,刘鑫.基于专利情报的石墨烯产业技术竞争态势研究[J].情报杂志,2017,36(12):75-81,89. [30]魏娟霞,刘志辉,张均胜,等.基于IPC-MC-Term三元组的技术竞争格局分析方法[J].情报科学,2018,36(12):90-95,117. [31]陶权,黄汉民.技术壁垒对国际产业转移及创新效率的影响[J].科技进步与对策,2015,32(10):40-44. [32]蔡静静,姚思宇.技术壁垒对出口企业技术创新决策的影响[J].中国科技论坛,2021(10):104-113. [33]美国商务部工业安全局.出口管制清单EAR[EB/OL].(2022-10-21)[2022-11-10].https://www.bis.doc.gov/index.php/regulations/export-administration-regulations-ear. [34]刘自强,许海云,岳丽欣,等.基于Chunk-LDAvis的核心技术主题识别方法研究[J].图书情报工作,2019,63(9):73-84. [35]张辛欣.制造业实力进一步壮大,信息通信实现迭代跨越[N].新华每日电讯,2022-06-15(003).