Research on the Prediction Method of Inter-Firm Technological Innovation Cooperation Based on Multiple Integration
Ju Chunhua1,2,3, Zhu Hui2, Cao Qianwen4
1. Modern Business Research Center,Zhejiang Gongshang University,Hangzhou 310018,China; 2. School of Management Engineering and E-commerce,Zhejiang Gongshang University,Hangzhou 310018,China; 3. E-commerce and New Consumption Research Institute,Zhejiang Financial College,Hangzhou 310018,China; 4. School of Business AdministrationMBA),Zhejiang Gongshang University,Hangzhou 310018,China
Abstract:The method of predicting reasonable technology innovation cooperation is an effective approach for enterprises to identify suitable partners in technology innovation,thereby enhancing their performance in this area.The present study utilizes enterprise patent data to construct a co-occurrence network of patent owners.It applies the Katz index to calculate the path similarity between enterprises,employs the TF-IDF algorithm to construct an enterprise keyword vector,calculates content similarity between enterprises using cosine similarity,and utilizes centrality indices from social network analysis methods to determine location similarity among enterprises.The enhanced integration of the three entities will unlock the collaborative potential among enterprises.Through the analysis of enterprise patent data in the Graphene field,we predict potential collaborations between enterprises and demonstrate the effectiveness of this method.The AUC index value is 0.7242,surpassing that of a single-index similarity recommendation method,thereby enhancing the accuracy of suitable matches in collaboration recommendations.
琚春华, 诸惠, 曹倩雯. 基于多元融合的企业技术创新合作预测方法研究[J]. 中国科技论坛, 2024(3): 108-119.
Ju Chunhua, Zhu Hui, Cao Qianwen. Research on the Prediction Method of Inter-Firm Technological Innovation Cooperation Based on Multiple Integration. , 2024(3): 108-119.
[1]LIU W W,TAO Y,BI K X.Capturing information on global knowledge flows from patent transfers:an empirical study using USPTO patents[J].Research policy,2022,51(5):1-21. [2]尹航,张雨涵,刘佳欣.组织距离、知识流动对联盟企业突破式创新的影响[J].科研管理,2019,40(1):22-31. [3]DE R G,SELIGER F.Sources of knowledge flow between developed and developing nations[J].Science and public policy,2020,47(1):16-30. [4]戚桂杰,李娜,王凯平,等.开放式创新平台用户交互、信息冗余与知识贡献研究[J].现代情报,2020,40(12):45-54. [5]唐源,邵云飞,陈一君.跨界行为、知识整合能力对企业创新绩效的影响研究:基于知识获取和资源损耗的作用[J].预测,2020,39(4):31-37. [6]郑胜华,李俊生.从关系能力到网络能力:合作能力演化阶段研究及展望[J].科技进步与对策,2020,37(21):152-160. [7]曾德明,张志东,赵胜超.科学合作网络、伙伴动态性与企业创新绩效[J].科学学研究,2022,40(5):906-914. [8]俞兆渊,鞠晓伟,余海晴.企业社会网络影响创新绩效的内在机理研究——打开知识管理能力的黑箱[J].科研管理,2020,41(12):149-159. [9]JEON J,LEE C,PARK Y.How to use patent information to search potential technology partners in open innovation[J].Journal of intellectual property rights,2011,16(5):385-393. [10]GAO S X,LI X,YU Z T,et al.Combining paper cooperative network and topic model for expert topic analysis and extraction[J].Neurocomputing,2017,257:136-143. [11]席笑文,郭颖,宋欣娜,等.基于word2vec与LDA主题模型的技术相似性可视化研究[J].情报学报,2021,40(9):974-983. [12]汪雪锋,付芸,邱鹏君,等.基于SAO分析的R&D合作伙伴识别研究[J].科研管理,2015,36(10):19-27. [13]SONG B,SEOL H,PARK Y.A patent portfolio-based approach for assessing potential R&D partners:an application of the shapleyvalue[J].Technological forecasting & social change,2016,103:156-165. [14]林原,王凯巧,刘海峰,等.网络表示学习在学者科研合作预测中的应用研究[J].情报学报,2020,39(4):367-373. [15]RAN C,SONG K,YANG L.An improved solution for partner selection of industry-university cooperation[J].Technology analysis & strategic management,2020,32(12):1478-1493. [16]GEUM Y,LEE S,YOON B,et al.Identifying and evaluating strategic partners for collaborative R&D:index-based approach using patents and publications[J].Technovation,2013,33(6-7):211-224. [17]CHUNG J,KO N,YOON J.Inventor group identification approach for selecting university-industry collaboration partners[J].Technological forecasting and social change,2021,171:1-11. [18]HITT M A,DACIN M T,LEVITAS E,et al.Partner selection in emerging and developed market contexts:resource-based and organizational learning perspectives[J].Academy of management journal,2000,43(3):449-467. [19]李柏洲,尹士.基于一致性的制造业企业伙伴选择多属性决策模型研究——合作创新视角[J].运筹与管理,2018,27(6):6-13. [20]杨博旭,王玉荣,李兴光.多维邻近与合作创新[J].科学学研究,2019,37(1):154-164. [21]马彩凤,彭正银.CEO任期与企业绩效关系研究[J].财经问题研究,2019(5):130-136. [22]李欣,温阳,黄鲁成,等.多层网络分析视域下的新兴技术研发合作网络演化特征研究[J].情报杂志,2021,40(1):62-70. [23]卢小宾,翟兴,王涛.基于复杂网络的信息分析模型研究[J].情报理论与实践,2020,43(5):177-182. [24]TUNINETTI M,ALETA A,PAOLOTTI D,et al.Prediction of new scientific collaborations through multiplex networks[J].EPJ data science,2021,10(1):1-10. [25]CHUAN P M,SON L H,ALI M,et al.Link prediction in co-authorship networks based on hybrid content similarity metric[J].Applied intelligence,2018,48(8):2470-2486. [26]BYUNGUN Y,BOMI S.A systematic approachof partner selection for open innovation[J].Industrial management & data system,2014,114(7):1068-1093. [27]LORRAIN F,WHITE H C.Structural equivalence of individuals in social networks[J].The journal of mathematics sociology,1971,1(1):49-80. [28]ADAMIC L A,ADAR E.Friends and neighbors on the web[J].Social networks.2003,25(3):211-230. [29]ZHOU T,LV L,ZHANG Y C.Predicting missing links via local information[J].European physical journal B,2009,71(4):623-630. [30]LEICHT E A,HOLME P,NEWMAN M E J.Vertex similarity in networks[J].Physical review E,2006,73(2):026120. [31]FOGARAS D,RACZ B.Practical algorithms and lower bounds for similarity search in massive graphs[J].IEEE transactions on knowledge and data engineering,2007,19(5):585-598. [32]GUNS R,ROUSSEAU R.Recommending research collaborations using link prediction and random forest classifiers[J].Scientometrics,2014,101(2):1461-1473. [33]余传明,龚雨田,赵晓莉,等.基于多特征融合的金融领域科研合作推荐研究[J].数据分析与知识发现,2017,1(8):39-47. [34]刘志辉,张志强.作者关键词耦合分析方法及实证研究[J].情报学报,2010(2):8-16. [35]丁敬达,郭杰.融合内容相似度和路径相似性的潜在作者合作关系挖掘[J].情报理论与实践,2021,44(1):124-128. [36]刘竟,孙薇.基于链路预测的潜在科研合作关系发现研究[J].情报理论与实践,2017,40(7):88-92. [37]刘晓燕,张淑伟,单晓红.面向技术融合的合作伙伴识别研究[J].科学学研究,2023,41(12):2164-2174. [38]于凯,郭煜婕.基于链路预测的潜在专利合作关系研究[J/OL].云南民族大学学报(自然科学版):1-14[2023-04-04].http://kns.cnki.net/kcms/detail/53.1192.N.20220523.0936.002.html. [39]王永贵,刘菲.网络中心性对企业绩效的影响研究——创新关联、政治关联和技术不确定性的调节效应[J].经济与管理研究,2019,40(5):113-127. [40]刘群慧,李丽.关系嵌入性、机会主义行为与合作创新意愿——对广东省中小企业样本的实证研究[J].科学学与科学技术管理,2013,34(7):83-94. [41]桂钦昌,杜德斌,刘承良.全球科研合作网络的动态演化及其驱动机制[J].地理学报,2023,78(2):423-442. [42]周静,庄艳阳,周季蕾.基于文本语义与动态网络结构的科研合作网络链路预测研究[J].情报资料工作,2022,43(6):21-29. [43]迟嘉昱,孙翎,刘波.网络位置、技术距离与企业合作创新:基于2003—2013企业专利合作数据的研究[J].科技管理研究,2015,35(22):22-25. [44]王宏起,夏凡,王珊珊.新兴产业技术融合方向预测:方法及实证[J].科学学研究,2020,38(6):1009-1017,1075. [45]陈卫静,郑颖.基于作者关键词耦合的潜在合作关系挖掘[J].情报杂志,2013,32(5):127-131. [46]杨震宁,杜双,侯一凡.目标期望与实现匹配效应如何影响联盟稳定——对中国高技术产业联盟的考察[J].管理世界,2022,38(12):122-143. [47]FREEMAN L C.Centrality in social networks conceptual clarification[J].Social networks,1978,1(3):215-239.