Research on the Mechanism and Path of Scientific Research Paradigm Transformation Driven by Artificial Intelligence ——Taking Biology as an Example
Li Yaling1,2, Bao Qianying1,2, Huang Chengfeng2
1. Development Strategy and Cooperation Center,Zhejiang Laboratory, Hangzhou 311121,China; 2. Laboratory for Intelligent Society and Governance in Zhejiang Laboratory, Hangzhou 311121,China
Abstract:Scientific research paradigm is the basic theory and method of scientific and technological innovation.Under the background of data explosion,the original scientific research paradigm is difficult to adapt to the solution of complex scientific problems.With the development of artificial intelligence technology in algorithm and computing power infrastructure,artificial intelligence technology represented by deep learning has brought new methods and tools for basic scientific research.Artificial intelligence technology mainly drives the change of scientific research paradigm by reshaping the mode of knowledge production,reengineering the scientific research workflow,and accelerating the cross-integration innovation.Taking the field of biology as an example,artificial intelligence technology has been widely used in drug discovery,protein structure prediction,and the prediction,evolution and control of infectious diseases.With the assistance of data-driven artificial intelligence methods,the solution of scientific problems has changed from the traditional bottom-up route to the data-driven top-down thinking.Through dimensionality reduction and approximate solution,the influencing factors directly related to practical problems are found,thus forming a new paradigm for solving scientific problems.
李亚玲, 包芊颖, 黄成凤. 人工智能驱动科研范式变革的机制与路径研究——以生物学为例[J]. 中国科技论坛, 2024(4): 12-21.
Li Yaling, Bao Qianying, Huang Chengfeng. Research on the Mechanism and Path of Scientific Research Paradigm Transformation Driven by Artificial Intelligence ——Taking Biology as an Example. , 2024(4): 12-21.
[1]陈套.推动科研范式升级 强化国家战略科技力量[J].中国科技奖励,2020(8):67-68. [2]薛菁华,徐慧婷,陈广玉.全球科研范式数字化转型趋势研究[J].竞争情报,2022,18(6):54-63. [3]李亚玲,魏阙.“未来实验室”数字平台驱动下的科研范式变革[J].科技智囊,2023(4):49-57. [4]孙蒙鸽,黄雨馨,韩涛,等.科研智能化新趋势下知识服务的挑战与机遇[J].情报杂志,2022,41(6):107,173-181. [5]胡志刚,王欣,李海波.从商业智能到科研智能:智能化时代的科学学与科技管理[J].科学学与科学技术管理,2021,42(1):3-20. [6]张兰,罗威,周倩,等.智能科研助手技术研究与进展[J].情报学进展,2022,14:242-264. [7]BERENS P,CRANMER K,LAWRENCE N D,et al.AI for science:an emerging agenda[J].arXiv preprint arXiv:230304217,2023. [8]VAN DIS E A,BOLLEN J,ZUIDEMA W,et al.ChatGPT:five priorities for research[J].Nature,2023,614(7947):224-226. [9]BERDEJO-ESPINOLA V,AMANO T.AI tools can improve equity in science[J].Science,2023,379(6636):991-991. [10]STOKES J M,YANG K,SWANSON K,et al.A deep learning approach to antibiotic discovery[J].Cell,2020,180(4):688-702. [11]DAVIES A,VELIČKOVIĆ P,BUESING L,et al.Advancing mathematics by guiding human intuition with AI[J].Nature,2021,600(7887):70-74. [12]MANKOWITZ D J,MICHI A,ZHERNOV A,et al.Faster sorting algorithms discovered using deep reinforcement learning[J].Nature,2023,618(7964):257-263. [13]向飒.人工智能对学术出版流程的再造及知识服务提升[J].中国科技期刊研究,2018,29(11):1091-1096. [14]YANG J,GRAFTON F,RANJBARVAZIRI S,et al.Phenotypic screening with deep learning identifies HDAC6 inhibitors as cardioprotective in a BAG3 mouse model of dilated cardiomyopathy[J].Science translational medicine,2022,14(652):eabl5654. [15]SINGH R,SLEDZIESKI S,BRYSON B,et al.Contrastive learning in protein language space predicts interactions between drugs and protein targets[J].Proceedings of the national academy of sciences,2023,120(24):e2220778120. [16]LIU G,CATACUTAN D B,RATHOD K,et al.Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii[J].Nature chemical biology,2023,19(11):1-9. [17]TEBON P J,WANG B,MARKOWITZ A L,et al.Drug screening at single-organoid resolution via bioprinting and interferometry[J].Nature communications,2023,14(1):3168. [18]BANNIGAN P,BAO Z,HICKMAN R J,et al.Machine learning models to accelerate the design of polymeric long-acting injectables[J].Nature communications,2023,14(1):35. [19]HUANG K,FU T,GAO W,et al.Artificial intelligence foundation for therapeutic science[J].Nature chemical biology,2022,18(10):1033-1036. [20]ANGELLO N H,RATHORE V,BEKER W,et al.Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling[J].Science,2022,378(6618):399-405. [21]JUMPER J,EVANS R,PRITZEL A,et al.Highly accurate protein structure prediction with AlphaFold[J].Nature,2021,596(7873):583-589. [22]TUNYASUVUNAKOOL K,ADLER J,WU Z,et al.Highly accurate protein structure prediction for the human proteome[J].Nature,2021,596(7873):590-596. [23]BAEK M,DIMAIO F,ANISHCHENKO I,et al.Accurate prediction of protein structures and interactions using a three-track neural network[J].Science,2021,373(6557):871-876. [24]DAUPARAS J,ANISHCHENKO I,BENNETT N,et al.Robust deep learning–based protein sequence design using ProteinMPNN[J].Science,2022,378(6615):49-56. [25]LUTZ I D,WANG S,NORN C,et al.Top-down design of protein architectures with reinforcement learning[J].Science,2023,380(6642):266-273. [26]OBERMEYER F,JANKOWIAK M,BARKAS N,et al.Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness[J].Science,2022,376(6599):1327-1332. [27]WARD T,JOHNSEN A,NG S,et al.Forecasting SARS-CoV-2 transmission and clinical risk at small spatial scales by the application of machine learning architectures to syndromic surveillance data[J].Nature machine intelligence,2022,4(10):814-827. [28]JIN C,CHEN W,CAO Y,et al.Development and evaluation of an artificial intelligence system for COVID-19 diagnosis[J].Nature communications,2020,11(1):5088. [29]GAO J,HEINTZ J,MACK C,et al.Evidence-driven spatiotemporal COVID-19 hospitalization prediction with Ising dynamics[J].Nature communications,2023,14(1):3093. [30]MONOD M,BLENKINSOP A,XI X,et al.Age groups that sustain resurging COVID-19 epidemics in the United States[J].Science,2021,371(6536):eabe8372. [31]HAUG N,GEYRHOFER L,LONDEI A,et al.Ranking the effectiveness of worldwide COVID-19 government interventions[J].Nature human behaviour,2020,4(12):1303-1312.