Intelligent Manufacturing Pilots and Enterprises Innovation ——A Quasi-Natural Experiment Based on the “Intelligent Manufacturing Pilot Demonstration Project”
Han Longyan1, Tu Yuhui1, Zhuang Qinqin2
1. School of Economics,Hefei University of Technology,Hefei 230601,China; 2. Institute of Quantitative and Technical Economics,Chinese Academy of Social Sciences,Beijing 100732,China
Abstract:Intelligent manufacturing is the main direction of the construction of a strong manufacturing country,and intelligent manufacturing pilot is an important institutional exploration to lead and drive the high-quality development of intelligent manufacturing.Based on the data of A-share listed manufacturing enterprises from 2010 to 2021,this paper uses the quasi-natural experiment of an intelligent manufacturing pilot demonstration project to investigate the effect of the intelligent manufacturing strategy on enterprises innovation and the mechanisms by multiple-time-point difference-in-differences model.Results show that intelligent manufacturing pilots significantly promote enterprises innovation,which remains valid through a variety of robustness tests.The mechanism analysis shows that the intelligent manufacturing plots can promote enterprises innovation by increasing R&D investment,upgrading human capital and easing financing constraints.Heterogeneity analyses show that the innovation-driven effects of intelligent manufacturing pilots are differentiated by the characteristics of enterprises,industries and regions,which are more significant for enterprises that are larger,in high-tech industries,and in eastern regions.In the end,it is necessary to expand the scope of pilot demonstration of intelligent manufacturing,adhere to the increase in external financing and internal R&D investment,and adhere to the “two-legged”approach of cultivating and introducing talents,adhere to enterprise-specific policies and implementing differentiated development paths,to better promote the intelligent transformation of China's manufacturing enterprises and the implementation of the strategy of a strong manufacturing country.
韩龙艳, 凃玉晖, 庄芹芹. 智能制造试点与企业创新——基于 “智能制造试点示范专项行动”的准自然实验[J]. 中国科技论坛, 2024(6): 77-86.
Han Longyan, Tu Yuhui, Zhuang Qinqin. Intelligent Manufacturing Pilots and Enterprises Innovation ——A Quasi-Natural Experiment Based on the “Intelligent Manufacturing Pilot Demonstration Project”. , 2024(6): 77-86.
[1]TAN Y,XUAN T,ZHANG C X,et al.Privatization and innovation:evidence from a quasi-natural experiment in china kelley school of business research paper theory[J].Quarterly Journal of Economics,2014,65 (3):417-428. [2]GAYLE P G.Market concentration and innovation:new empirical evidence on the schumpeterian hypothesis[R].Discussion Papers in Economics,2001. [3]辜胜阻,韩龙艳,何峥.供给侧改革需加快推进国企创新驱动战略——来自央企的调查研究[J].湖北社会科学,2016,355 (7):87-92. [4]张燕,邓峰,卓乘风.产业政策对创新数量与质量的影响效应[J].宏观质量研究,2022 (3):63-78. [5]张杰,郑文平,翟福昕.竞争如何影响创新:中国情景的新检验[J].中国工业经济,2014 (11):56-68. [6]单春霞,李倩,丁琳.知识产权保护、创新驱动与制造业高质量发展——有调节的中介效应分析[J].经济问题,2023,522 (2):51-59. [7]WRIGHT P K,BOURNE D A.Manufacturing intelligence[M].New Jersey:Addison-Wesley,1998. [8]周济.走向新一代智能制造[J].中国科技产业,2018,348 (6):20-23. [9]刘军,史梦雪,招玉辉.智能化对中国经济增长的影响研究[J].河海大学学报 (哲学社会科学版),2021,23 (4):44-50,106-107. [10]孙早,侯玉琳.工业智能化如何重塑劳动力就业结构[J].中国工业经济,2019,374 (5):61-79. [11]GOLDFARB A,TREFLER D.AI and international trade[R].NBER Working Paper,2018. [12]肖静华,吴小龙,谢康,等.信息技术驱动中国制造转型升级——美的智能制造跨越式战略变革纵向案例研究[J].管理世界,2021 (3):161-179,225,11. [13]张兵,孙明欣,钱昕怡,等.科技金融、智能制造与绿色技术创新:基于省际面板数据的实证研究[J].科技管理研究,2023,43 (17):236-246. [14]徐兰,吴超林.数字经济赋能制造业价值链攀升:影响机理、现实因素与靶向路径[J].经济学家,2022 (7):76-86. [15]史丹,孙光林.大数据发展对制造业企业全要素生产率的影响机理研究[J].财贸经济,2022,43 (9):85-100. [16]权小锋,李闯.智能制造与成本粘性——来自中国智能制造示范项目的准自然实验[J].经济研究,2022,57 (4):68-84. [17]温素彬,张金泉,焦然.智能制造、市场化程度与企业运营效率:基于A股制造业上市公司年报的文本分析[J].会计研究,2022,421 (11):102-117. [18]林熙,刘啟仁,冯桂媚.智能制造与绿色发展:基于工业机器人进口视角[J].世界经济,2023,46 (8):3-31. [19]尹洪英,李闯.智能制造赋能企业创新了吗:基于中国智能制造试点项目的准自然试验[J].金融研究,2022,508 (10):98-116. [20]谷城,张树山.智能制造何以实现企业绿色创新 “增量提质”[J].产业经济研究,2023,122 (1):129-142. [21]AGHION P B,JONES F,JONES C I.Artificial intelligence and economic cash[R].NBER Working Paper,2017. [22]KARHADE P P,DONG J Q.Information technology investment and commercialized innovation performance:dynamic adjustment costs and curvilinear impacts[J].MIS Quarterly,2021,45 (3):1007-1024. [23]HAUG A,WICKSTRM K A,STENTOFT J,et al.The impact of information technology on product innovation in smes:the role of technological orientation[J].Journal of Small Business Management,2020 (7):1-27. [24]胡海波,卢海涛.企业商业生态系统演化中价值共创研究——数字化赋能视角[J].经济管理,2018 (8):55-71. [25]王昌林.大众创业万众创新理论初探[M].北京:人民出版社,2018. [26]CASSIMANA B,VEUGELERS R.In search of complementarity in innovation strategy:internal R&D and external knowledge acquisition[J].Management Science,2006,52 (1):68-82. [27]邹洋,聂明明,郭玲,等.财税政策对企业研发投入的影响分析[J].税务研究,2016,379 (8):42-46. [28]程瑶,闫慧慧.税收优惠对企业研发投入的政策效应研究[J].数量经济技术经济研究,2018,35 (2):116-130. [29]ACEMOGLU D,RESTREPO P.Robots and jobs:evidence from us labor markets[J].Journal of Political Economy,2020,128 (6):2188-2244. [30]孙早,侯玉琳.工业智能化如何重塑劳动力就业结构[J].中国工业经济,2019 (5):61-79. [31]吴一平,陈家和,李鹏飞.自动化技术应用与企业人力资本结构:基于供应链视角的研究[J].财经研究,2023,49 (7):4-18. [32]李后建,刘培森.人力资本结构多样性对企业创新的影响研究[J].科学学研究,2018,36 (9):1694-1707. [33]王可,李连燕. “互联网+”对中国制造业发展影响的实证研究[J].数量经济技术经济研究,2018,35 (6):3-20. [34]张树山,胡化广,孙磊,等.智能制造如何影响企业绩效:基于 “智能制造试点示范专项行动”的准自然实验[J].科学学与科学技术管理,2021,2 (11):120-136. [35]肖红军,阳镇,刘美玉.企业数字化的社会责任促进效应:内外双重路径的检验[J].经济管理,2021,43 (11):52-69. [36]王刚刚,谢富纪,贾友.R&D补贴政策激励机制的重新审视:基于外部融资激励机制的考察[J].中国工业经济,2017 (2):60-78. [37]黎文靖,郑曼妮.实质性创新还是策略性创新——宏观产业政策对微观企业创新的影响[J].经济研究,2016 (4):60-73.