Research on Resilience Monitoring and Early Warning Based on the World's Important Talent Centers and Innovation Highlands in Five Major Urban Agglomerations
Liu Boliang1, Liu Xiaofang1, Wang Lei2, Zhang Xiangqian1
1. School of Humanities,Shanghai University of Technology,Shanghai 201418,China; 2. School of International Affairs and Public Administration,Ocean University of China,Qingdao 266100,China
Abstract:This paper is based on the resilient evolution process of major global talent centers and innovation hubs in five major urban agglomerations:the Yangtze River Delta,the Pearl River Delta,the Beijing-Tianjin-Hebei region,the Middle Yangtze River,and the Chengdu-Chongqing region.It identifies resilience characteristics including diversity,connectivity,adaptability,mobility,and buffering capacity,and establishes an early warning system for major global talent centers and innovation hubs.An empirical analysis of the development of these five urban agglomerations from 2018 to 2021 in building major global talent centers and innovation hubs leads to the following conclusions:①In terms of temporal progression,the overall resilience values of each urban agglomeration show an upward trend,and the values of the buffering capacity dimension also exhibit a wave-like upward trend,indicating that the ability of each urban agglomeration to resist risks is relatively strong.②In terms of spatial distribution,the resilience values of various urban agglomerations fluctuate significantly,indicating significant regional disparities in the development among urban agglomerations in China.Based on the empirical research results,China needs to further strengthen the internal structure and functional systems of world-important talent centers and innovation high grounds,enhance support for talent and education cultivation,and establish a sound resilience monitoring and early warning system.
刘伯良, 刘小芳, 王磊, 张向前. 基于五大城市群的世界重要人才中心和创新高地韧性监测与预警研究[J]. 中国科技论坛, 2024(8): 124-136.
Liu Boliang, Liu Xiaofang, Wang Lei, Zhang Xiangqian. Research on Resilience Monitoring and Early Warning Based on the World's Important Talent Centers and Innovation Highlands in Five Major Urban Agglomerations. , 2024(8): 124-136.
[1]省委、省政府印发关于贯彻落实《粤港澳大湾区发展规划纲要》的实施意见[N].南方日报,2019-07-05(A04). [2]WERNER E E,SMITH R S.Overcoming the odds:high risk children from birth to adulthood[M].New York:Cornell University Press,2019. [3]栾宇,张海涛,李依霖,等.基于韧性理论的突发事件情报决策体系研究[J].情报理论与实践,2023,11(14):16-20. [4]HOLLING C S.Resilience and stability of ecological systems[J].Annual Review of Ecology and Systematics,1973,4(1):1-23. [5]AHERN J.From fail-safe to safe-to-fail:sustainability and resilience in the new urban world[J].Landscape and Urban Planning,2011,100(4):341-343. [6]HUDEC O,REGGIANI A,SISEROVÁ M.Resilience capacity and vulnerability:a joint analysis with reference to Slovak urban districts[J].Cities,2018,73:24-35. [7]BURTON C G.A validation of metrics for community resilience to natural hazards and disasters using the recovery from hurricane katrina as a case study[J].Annals of the Association of American Geographers,2015,105(1):67-86. [8]BEATTON J,GOLD J.Human resource management:theory and practice[M].New York:Palgrave Macmillan,2012. [9]理查德·R.尼尔森.国家(地区)创新体系:比较分析[M].北京:知识产权出版社,2012. [10]彭琼林.打造高水平人才高地先行区[N].中国组织人事报,2021-11-08(6). [11]陈昌芸,刘振天.我国高校分类管理政策的演变历程、多重逻辑及优化路径——审视《国家中长期教育改革和发展规划纲要(2010—2020年)》实施十年[J].江苏高教,2021(10):35-45. [12]梁林,赵玉帛,刘兵.国家级新区创新生态系统韧性监测与预警研究[J].中国软科学,2020,355(7):92-111. [13]刘伯良,张向前.基于战略支点城市的世界重要人才中心和创新高地韧性监测与预测研究[J/OL].科技进步与对策,1-13[2024-04-12].http://kns.cnki.net/kcms/detail/42.1224.G3.20240410.1045.014.html. [14]赵玉帛,张贵,王宏.数字经济产业创新生态系统韧性理念、特征与演化机理[J].软科学,2022,36(11):1-15. [15]高松.构建多样性开放型可持续改进的人才培养体系为中国式现代化培育时代新人[J].中国大学教学,2023(5):11-17. [16]宫晓辰,孙涛,叶士华.政治关联可以提升社会组织生存能力吗:基于收入多样性的中介效应分析[J].公共管理与政策评论,2022,11(1):34-41. [17]武翠,谭清美.产业相关多样性对区域经济韧性的影响——来自创新生态系统共生性的解释[J].科技进步与对策,2023,40(6):21-28. [18]曹如中,史健勇,郭华,等.区域创意产业创新生态系统演进研究:动因、模型与功能划分[J].经济地理,2015,35(2):107-113. [19]ADNER R,KAPOOR R.Value creation in innovation ecosystems:how the e structure of technological interdependence affects firm performance in new technology generations[J].Strategic Management Journal,2010,31(3):306-333. [20]沈宏婷.中国创新投入与创新产出的重心演变及耦合关系研究[J].现代经济探讨,2023(4):40-48. [21]罗利华,胡先杰,冯君.企业创新效率评价指标体系实证比较研究[J].科研管理,2018,39(2):23-29. [22]王欢,张玲.中国创新型产业集群投入产出效率动态演进及区域差异:基于省际面板数据的分析[J].科技进步与对策,2022,39(6):11-17. [23]胡绪华,李新.流空间视角下高端生产性服务业劳动力的空间分布效应及其网络结构特征分析[J].软科学,2023,5(3):53-62. [24]程丹亚,曾刚.本地-跨界视角下长三角区域绿色技术创新网络结构特征研究[J].人文地理,2023,38(5):55-61. [25]梁林,段世玉,李妍.中国南北差距现象能得到改善吗:三大重点城市群创新网络韧性监测和比较[J].中国科技论坛,2022(7):106-117. [26]刘微微,石春生,赵圣斌.具有速度特征的动态综合评价模型[J].系统工程理论与实践,2013,33(3):705-710. [27]倪鹏飞,徐海东,刘笑男.耦合协调度与城市可持续竞争力:基于亚洲564个城市的分析[J].社会科学战线,2021(2):70-77. [28]查成伟,陈万明,唐朝永,等.区域人才聚集预警模型研究——以江苏省为例[J].科技进步与对策,2014,31(16):152-156. [29]欧阳艳敏,王长峰,刘柳,等.基于改进自适应最优分割法的风险预警区间模型研究——针对重大突发公共卫生事件[J].中国管理科学,2022,30(11):12-23.