Path Identification of Innovation Ecosystem-driven Urban Innovation Performance
Wu Guangdong1, Yuan Mingjie1, Xie Zhiming2
1. School of Public Policy and Administration,Chongqing University,Chongqing 400044,China; 2. School of Management Nanjing University of Posts and Telecommunications,Nanjing 210003,China
Abstract:Enhancing the urban innovation ecosystems plays a crucial role in boosting the innovation capabilities of China's cities.This study focuses on 59 pilot cities identified for their innovative approaches within China,employing the fuzzy set qualitative comparative analysis method to explore the complex causal relationships that influence urban innovation performance.The innovation ecosystem is segmented into three main subsystems including the core innovation entities,available innovation resources,and the surrounding innovation environment.We examine the interconnectedness of the three subsystems and their effects on driving urban innovation performance.Our findings reveal that high urban innovation performance doesn't hinge on a single essential condition.However,the absence of technological innovators is a critical factor for lower innovation outcomes.We identify three ecosystem models capable of fostering high innovation performance,those driven by the environment,a balanced growth of resources and environment,and technological-environmental progress.Moreover,the strategies propelling high innovation performance differ between the eastern and the central-western areas.This research contributes to a deeper comprehension of urban innovation ecosystems and uncovers various pathways through which Chinese cities can achieve superior innovation performance,guided by the theoretical underpinnings of innovation ecosystems.
[1]晏艳阳,王娟,卢彦瑾.创新型城市试点建设的“以点带面”效应研究[J].科研管理,2022,43(7):20-28. [2]GRANSTRAND O,HOLGERSSON M.Innovation ecosystems:a conceptual review and a new definition[J].Technovation,2020,90:102098. [3]张贵,姜兴,蔡盈.区域与城市创新生态系统的理论演进及热点前沿[J].经济与管理,2022,36(4):36-45. [4]唐开翼,欧阳娟,甄杰,等.区域创新生态系统如何驱动创新绩效:基于31个省市的模糊集定性比较分析[J].科学学与科学技术管理,2021,42(7):53-72. [5]杜运周,贾良定.组态视角与定性比较分析(QCA):管理学研究的一条新道路[J].管理世界,2017(6):155-167. [6]王楠,杨柯巍.新形势下强化企业创新主体地位的问题及对策研究[J].科学学与科学技术管理,2024,45(1):3-11. [7]ADNER R.Match your innovation strategy to your innovation ecosystem[J].Harvard Business Review,2006,84(4):98. [8]OH D-S,PHILLIPS F,PARK S,et al.Innovation ecosystems:a critical examination[J].Technovation,2016,54:1-6. [9]RITALA P,ALMPANOPOULOU A.In defense of ‘eco’ in innovation ecosystem[J].Technovation,2017,60:39-42. [10]PROKOP V,HAJEK P,STEJSKAL J.Configuration paths to efficient national innovation ecosystems[J].Technological Forecasting and Social Change,2021,168:120787. [11]王飞航,本连昌.创新生态系统视角下区域创新绩效提升路径研究[J].中国科技论坛,2021(3):154-163. [12]胡宁宁,侯冠宇.区域创新生态系统如何驱动高技术产业创新绩效:基于30个省份案例的NCA与fsQCA分析[J].科技进步与对策,2023,40(10):100-109. [13]解学梅,刘晓杰.区域创新生态系统生态位适宜度评价与预测:基于2009—2018中国30个省市数据实证研究[J].科学学研究,2021,39(9):1706-1719. [14]伊辉勇,曾芷墨,杨波.高技术产业创新生态系统生态位适宜度与创新绩效空间关系研究[J].中国科技论坛,2022(11):82-92. [15]张峰,魏巍,陈嘉伟,等.区域创新生态系统能否提高产业链韧性:来自黄河流域的时空非平稳性检验[J/OL].科技进步与对策,1-11[2024-04-02].http://kns.cnki.net/kcms/detail/42.1224.G3.20231207.1359.015.html. [16]KAUFFELD-MONZ M,FRITSCH M.Who are the knowledge brokers in regional systems of innovation?A multi-actor network analysis[J].Regional Studies,2013,47(5):669-685. [17]KLINE S J,ROSENBERG N.An overview of innovation//Studies on Science and the Innovation Process[M].Singapore World Scientific,2009. [18]LIU R,TANG F,WANG Y,et al.A modified NK algorithm based on BP neural network and DEMATEL for evolution path optimization of urban innovation ecosystem[J].Complex & Intelligent Systems,2023,9(3):2333-2349. [19]BROMBERG D E.Problem solving with the private sector:a public solutions handbook[M].New York:Routledge,2016. [20]LENIHAN H,MCGUIRK H,MURPHY K R.Driving innovation:public policy and human capital[J].Research Policy,2019,48(9):103791. [21]KUO C C,YANG C H.Knowledge capital and spillover on regional economic growth:evidence from China[J].China Economic Review,2008,19(4):594-604. [22]WANG S,JIN F,D ZHAO D T,et al.Regional innovation environment and innovation efficiency:the Chinese case[J].Strategic Management,2016,28(4):396-410. [23]张莉娜,倪志良.科技人才集聚与区域创新效率:基于空间溢出与门槛效应的实证检验[J].软科学,2022,36(9):45-50. [24]倪鹏飞,白晶,杨旭.城市创新系统的关键因素及其影响机制:基于全球436个城市数据的结构化方程模型[J].中国工业经济,2011(2):16-25. [25]GERSTLBERGER W.Regional innovation systems and sustainability—selected examples of international discussion[J].Technovation,2004,24(9):749-758. [26]赵蓉,冯凯丽,袁世一,等.区域高技术产业创新环境组态研究:基于模糊集定性比较分析(fsQCA)[J].科技管理研究,2022,42(11):73-80. [27]NING L,WANG F,LI J.Urban innovation,regional externalities of foreign direct investment and industrial agglomeration:evidence from Chinese cities[J].Research Policy,2016,45(4):830-843. [28]王儒奇,胡绪华.区域创新系统内主体间创新溢出效应研究——以长江经济带为例[J].南京财经大学学报,2022(3):12-22. [29]LIN B,MA R.Green technology innovations,urban innovation environment and CO2 emission reduction in China:fresh evidence from a partially linear functional-coefficient panel model[J].Technological Forecasting and Social Change,2022,176:121434. [30]孙磊华,何海燕,常晓涵,等.技术环境波动如何影响企业风险承担:基于创新环境不确定性的视角[J].经济与管理研究,2022,43(5):128-144. [31]栗志慧,刘洁.数字化背景下京津冀城市群区域创新生态系统评价研究[J].中国软科学,2024(S1):191-202. [32]王海军,贺子桐,马晓琳,等.数字化下区域创新生态系统的组织与机制演进:基于中关村科技园区的纵向案例研究[J/OL].科技进步与对策,1-12[2023-08-20].http://kns.cnki.net/kcms/detail/42.1224.g3.20231117.1615.008.html. [33]ZHANG M,LI B,YIN S.Configurational paths to regional innovation performance:the interplay of innovation elements based on a fuzzy-set qualitative comparative analysis approach[J].Technology Analysis & Strategic Management,2020,32(12):1422-1435. [34]LI X.China’s regional innovation capacity in transition:an empirical approach[J].Research Policy,2009,38(2):338-357. [35]刘升阳.技术创新政策对区域创新绩效的影响机理——以河南省为例[J].地域研究与开发,2020,39(5):30-35. [36]程建青,罗瑾琏,杜运周,等.何种创业生态系统产生女性高创业活跃度[J].科学学研究,2021,39(4):695-702. [37]柳卸林,杨培培,王倩.创新生态系统——推动创新发展的第四种力量[J].科学学研究,2022,40(6):1096-1104. [38]中国科学技术信息研究所.国家创新型城市创新能力评价报告2022[M].北京:科学技术文献出版社,2023. [39]XIE Z,WANG X,XIE L,et al.Entrepreneurial ecosystem and the quality and quantity of regional entrepreneurship:a configurational approach[J].Journal of Business Research,2021,128:499-509. [40]朱桂龙,赛夫,秦梓韬.中国各省创新水平关键影响因素及发展路径识别:基于模糊集定性比较分析[J].科学学与科学技术管理,2021,42(9):52-70.