Measurement of Innovation in the Core Industry of China's Digital Economy——Taking Text Mining of Top 100 Enterprises in Electronic Information Industry as An Example
Wei Jie1, Song Yuhang2, Ren Yujia1
1. School of Digital Economics and Management,Nanjing University,Suzhou 215163,China; 2. School of Economics and Management,Northwest University,Xi'an 710127,China
Abstract:As an important driving force for a new round of scientific and technological revolution and industrial transformation,the digital economy has become an important engine to promote the development of new quality productivity.Therefore,this paper focuses on the innovation of electronic information industry,the core industry of digital economy.Based on the analyst reports of the top 100 enterprises in the electronic information industry listed in A-shares,this paper uses the method of text information mining to examine the basic characteristics and development trend of the overall innovation and innovation types in China's digital economy.The results show that the overall innovation of the core industries of China's digital economy is currently showing the characteristics of rapid progress,radical innovations in many subdivisions such as 5G technology,chip manufacturing,artificial intelligence and other fields burst out,and incremental innovation and integration of self-developed disruptive technologies in the fields of lithium batteries,electronic display and optical fiber and cable have achieved a typical sense of “curve overtaking”.More importantly,the method of measuring innovation based on the text information mining of analyst reports not only overcomes the problems of patent strategic disclosure and patent information lag in the digital era,but also makes up for the technical omission of the measurement of patent innovation that has not been published,which is a new breakthrough in methodology.
魏婕, 宋宇航, 任羽佳. 中国数字经济核心产业创新测度——以电子信息产业百强企业文本挖掘为例[J]. 中国科技论坛, 2024(11): 50-60.
Wei Jie, Song Yuhang, Ren Yujia. Measurement of Innovation in the Core Industry of China's Digital Economy——Taking Text Mining of Top 100 Enterprises in Electronic Information Industry as An Example. , 2024(11): 50-60.
[1]安同良,魏婕,舒欣.中国制造业企业创新测度:基于微观创新调查的跨期比较[J].中国社会科学,2020(3):99-122,206. [2]柏培文,张云.数字经济、人口红利下降与中低技能劳动者权益[J].经济研究,2021,56(5):91-108. [3]LIU Y,DONG J,MEI L,et al.Digital innovation and performance of manufacturing firms:an affordance perspective[J].Technovation,2023,119:102458. [4]戴若尘,王艾昭,陈斌开.中国数字经济核心产业创新创业:典型事实与指数编制[J].经济学动态,2022(4):29-48. [5]BESSEN J,MASKIN E.Sequential innovation,patents,and imitation[J].The RAND Journal of Economics,2009,40(4):611-635. [6]SHAPIRO C,LEMLEY M A.The role of antitrust in preventing patent holdup[J].University of Pennsylvania Law Review,2020,168:2019. [7]LEVINR C.A New Look at the patent system[J].American Economic Review,1986,76(2):199-202. [8]YANG C H.How artificial intelligence technology affects productivity and employment:firm-level evidence from Taiwan[J].Research Policy,2022,51(6):104536. [9]黄勃,李海彤,刘俊岐,等.数字技术创新与中国企业高质量发展——来自企业数字专利的证据[J].经济研究,2023,58(3):97-115. [10]吴非,胡慧芷,林慧妍,等.企业数字化转型与资本市场表现——来自股票流动性的经验证据[J].管理世界,2021,37(7):130-144,10. [11]BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003(3):993-1022. [12]关鹏,王曰芬.科技情报分析中LDA主题模型最优主题数确定方法研究[J].现代图书情报技术,2016(9):42-50. [13]FREEMAN C,NELSON R,SILVERBERG G,et al.Technical change and economic theory[M].London:Pinter,1988. [14]赵宸宇.数字化发展与服务化转型——来自制造业上市公司的经验证据[J].南开管理评论,2021,24(2):149-163. [15]胡增玺,马述忠.市场一体化对企业数字创新的影响——兼论数字创新衡量方法[J].经济研究,2023,58(6):155-172. [16]程新生,郑海埃,程昱.创新信息披露、分析师跟踪与市场反应研究[J].科研管理,2020,41(1):161-173. [17]WEI L,MIAO X,JING H,et al.Bank risk aggregation based on the triple perspectives of bank managers,credit raters,and financial analysts[J].Finance Research Letters,2023,57:104213. [18]TU M.Analyst report,information transparency and stock price synchronization[J].Academic Journal of Business & Management,2022,4(14):41-45. [19]ROEDER J,PALMEI M,MUNTERMANN J.Data-driven decision-making in credit risk management:the Information value of analyst reports[J].Decision Support Systems,2022,158:113770. [20]BOUTESKA A,MILI M.The role of investor sentiment and valuation uncertainty in the changes around analyst recommendations:evidence from U.S.firms[J].Journal of Behavioral Finance,2023,24(1):73-96. [21]DAUDERT T.Exploiting textual and relationship information for fine-grained financial sentiment analysis[J].Knowledge-Based Systems,2021,230:107389. [22]JIANG X F,XIONG L,CEN T,et al.Analyst sentiment and earning forecast bias in financial markets[J].Physica A:Statistical Mechanics and Its Applications,2022,589:126601. [23]BROWN T J.Ethics,burnout,and reported life and job attitudes among board-certified behavior analysts[J].Behavior Analysis:Research and Practice,2021,21(4):364-375. [24]张辉,陈海龙,刘鹏.智能时代信息通用技术创新微观动力机制分析:基于沃尔玛信息技术演化的纵向案例研究[J].科研管理,2021,42(6):32-40. [25]杨青,吉赟,王亚男.高铁能提升分析师盈余预测的准确度吗——来自上市公司的证据[J].金融研究,2019(3):168-188. [26]许汝俊,王霞,徐明亮.财务报告信息可比性影响分析师私有信息获取吗[J].证券市场导报,2021(8):26-35. [27]BELLSTAM G,BHAGAT S,COOKSON A J.A text-based analysis of corporate innovation[J].Management Science,2021,67(7):4004-4031. [28]RICHERT W,COELHO L P.Building machine learning systems with python[M].Birmingham:Packt Publishing,2013. [29]TEH Y W,JORDAN M I,BEAL M J,et al.Hierarchical dirichlet processes[J].Journal of the American Statistical Association,2006,101(476):1566-1581. [30]MANSFIELD E.Industrial research and technological innovation:an econometric analysis[M].New York:Norton,1968. [31]法格博格,莫利,纳尔逊.牛津创新经济学手册:第1版[M].柳卸林,郑刚,蔺雷,等译.北京:知识产权出版社,2009. [32]BLOOM N,HASSAN T A,KALYANI A,et al.The diffusion of new technologies[R].NBER Working Paper,No.28999,2021. [33]安同良,姜舸,王大中.中国高技术制造业技术测度与赶超路径——以锂电池行业为例[J].经济研究,2023,58(1):192-208.