Abstract:This paper carried out the whole sample analysis of 3296 papers from the Web of Science by CiteSpace.It found that the research history of the global big data was divided into exploration period,increase period and eruptive period.The researches showed the characteristics such as a wide range of covering subjects,animate big data research of life science,the simultaneous development of big data research on humanities and social sciences and science and technology.The US and China contributed prominently in the big data research.The global data research formed the evolving path of“the theory embryonic stage—the technology exploratory stage—the practical application stage”.And it would change from theory to industry in the future and be paid more attention to solve practical problems.
王倩, 李天柱, 刘小琴. 全球大数据研究的历史演进:1993—2016年[J]. 中国科技论坛, 2017(7): 33-39.
Wang Qian, Li Tianzhu, Liu Xiaoqin. Historic Evolution of Global Big Data Research:1993—2016. , 2017(7): 33-39.
[1]Mckinsey Global Institude.Big data:the next frontier for innovation,competition and productivity[R].May,2011. [2]CHAOMEI C.Searching for intellectual turning points:progressive knowledge domain visualization[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(Suppl.1):5303-5310. [3]CHEN C.CiteSpaceⅡ:Detecting and visualizing emerging trends and transient patterns in scientific literature[J].Journal of the American society for information science and technology,2005,57(3):359-377. [4]维克托·迈尔—舍恩伯格,肯尼思·库克耶.大数据时代——生活、工作与思维的大变革[M].盛杨燕,周涛,译.杭州:浙江人民出版社,2012. [5]赵蓉英,许丽敏.文献计量学发展演进与研究前沿的知识图谱探析[J].中国图书馆学报,2010,36(5):60-68. [6]李天柱,马佳,吕健露,侯锡林.大数据价值孵化机制研究[J].科学学研究,2016,34(3):321-329. [7]陈超美.CiteSpaceⅡ:科学文献中新趋势与新动态的识别与可视化[J].陈悦,等译.情报学报,2009,28(3):401-421. [8]刘则渊,等.科学知识图谱:方法与应用[M].北京:人民出版社,2008. [9]MOED HF.Citation analysis in research evolution[M].Dordrecht:Springer,2005.