Frontier Dynamics of Big Data Recommendation Algorithm at Home and Abroad
Chen Jun1,2, Xie Weihong1,2, Chen Yangsen1
1.School of Management,Guangdong University of Technology,Guangzhou 510520,China 2.Big data Strategy Research Institute of Guangdong University of Technology,Guangzhou 510520,China
摘要大数据时代下,信息过载问题日益突出,使得大数据推荐算法研究显得尤为重要。 本文基于Web of Science和中国知网的大数据推荐算法期刊文献数据,运用文献计量、共词分析和社会网络方法,从高频关键词共现、关键词主题演进、研究动态等方面对大数据推荐算法领域的总体情况进行量化比较研究。结果显示,国外大数据推荐算法在理论和应用的研究上都领先于国内,特别是在应用上的广度和深度是国内大数据推荐算法需要加强研究的方向。大数据推荐算法朝着个性化教育、个性化医疗、个性化社会网络服务等应用领域发展。本文对促进中国大数据推荐算法理论的纵深研究、深层次的应用研究以及向着国际化发展具有一定的指导意义。
Abstract:In the age of big data,the problem of information overload has become increasingly prominent,then the research on big data recommendation algorithm has become increasingly important.This paper takes the articles of big data recommendation algorithm from Web of Science and CNKI as data sources,and uses the method of bibliometrics,co-word analysis and SNA to do quantitative comparative analysis from co-word of high frequency keywords,the evolution of keywords and dynamics research.The results show that the abroad research on the theory and application of big data recommendation algorithm are matured than the domestic.Especially we should strengthen the study of the application's breadth and depth.Big data recommendation algorithm develops into the trend of individualized education,personalized medical care,personalized social network service and other applications.This paper has a certain guiding significance to promote the deep research of the theory of big data recommendation algorithm,the deep application research and the development of internationalization.
陈军, 谢卫红, 陈扬森. 国内外大数据推荐算法领域前沿动态研究[J]. 中国科技论坛, 2018(1): 173-181.
Chen Jun, Xie Weihong, Chen Yangsen. Frontier Dynamics of Big Data Recommendation Algorithm at Home and Abroad. , 2018(1): 173-181.
[1]SOLTYSIK R C,YARNOLD P R.MegaODA large sample and BIG DATA time trials:separating the chaff[J].Optimal data analysis,2013,2(2):194-197. [2]SHERLOCK A.Managing information overload[J].Medical journal of Australia,2014,201(201):200-202. [3]PING H.The research on personalized recommendation algorithm of library based on big data and association rules[J].Open cybernetics & systemics journal,2015,9(1):2554-2558. [4]ANDEIRSON C.The long tail:Why the future of business is selling less of more[J].Journal of product innovation management,2005,24(3):274-276(3). [5]YANG X Q.An intelligent E-commerce recommendation algorithm based on collaborative filtering technology[C]// International Conference on Intelligent Computation Technology and Automation.IEEE,2015:80-83. [6]PESSEMIER T D,VANHECKE K,MARTENS L,et al.Content-based recommendation algorithms on the hadoop mapreduce Framework[C]// Webist 2011,Proceedings of the,International Conference on Web Information Systems and Technologies,Noordwijkerhout,the Netherlands,6-9 May.2011:237-240. [7]JOLDZIC O V.Applying mapreduce algorithm to performance testing in lexical analysis on HDFS[C]//Telecommunications Forum(TELFOR),2013 21st.IEEE,2013:841-844. [8]孙远帅.基于大数据的推荐算法研究[D].厦门大学,2014. [9]孙天昊,黎安能,李明,等.基于Hadoop分布式改进聚类协同过滤推荐算法研究[J].计算机工程与应用,2015,51(15):124-128. [10]魏瑞斌.社会网络分析在关键词网络分析中的实证研究[J].情报杂志,2009,28(9):46-49. [11]孙清兰.高频,低频词的界分及词频估计方法[J].情报科学,1992(2):28-32. [12]付允,牛文元,汪云林,等.科学学领域作者合作网络分析——以《科研管理》(2004—2008)为例[J].科研管理,2009(3):41-46. [13]刘军.整体网分析讲义-UCINE软件应用(第二届社会网与关系管理研讨会资料)[R].哈尔滨:哈尔滨工程大学社会学系,2007,111. [14]盛亚,范栋梁.结构洞分类理论及其在创新网络中的应用[J].科学学研究,2009(9):1407-1411. [15]BURT R S.Structural hole[M].Harvard Business School Press,Cambridge,MA,1992. [16]张勤,马费成.国外知识管理研究范式——以共词分析为方法[J].管理科学学报,2007,10(6):65-75. [17]吉亚力,田文静,董颖.基于关键词共现和社会网络分析法的我国智库热点主题研究[J].情报科学,2015(3). [18]李改,潘嵘,李章凤,等.基于大数据集的协同过滤算法的并行化研究[J].计算机工程与设计,2012,33(6):2437-2441. [19]曹萍.基于大数据的协同过滤推荐算法研究[D].南京农业大学,2014. [20]丁然.大数据时代电子商务个性化推荐发展趋势[J].电子商务,2015(4):5-5. [21]BANSEMIR B.Research paradigm[M].Springer Fachmedien Wiesbaden,2013:9-11. [22]查礼.基于Hadoop的大数据计算技术[J].科研信息化技术与应用,2012,3(6):26-33. [23]陈佑雄,向阳,张骐,等.基于LSH和MapReduce的近邻模型推荐算法[J].微电子学与计算机,2013(12):47-49. [24]王彬,雷丽晖.一种利用大数据分析优化的分布式并行算法[J].计算机与数字工程,2013,41(11):1720-1724. [25]应璇,孙济庆,等.面向大数据的用户检索行为研究[J].情报杂志,2014(2):140-143.